ON ANALYTIC FUNCTIONS DEFINED BY A NEW GENERALIZED MULTIPLIER DIFFERENTIAL OPERATOR
Main Article Content
Abstract
Abstract: The object of this paper is to obtain inclusion results, structural formula, coefficient estimates and other interesting properties of analytic functions belonging to a new class defined by using a new generalised multiplier differential operator.
Downloads
Article Details
References
REFERENCES
F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 27(2004), 1429-1436.
S. D. Bernardi, Convex and starlike functions, Trans. Amer. Math. Soc., 135(1969), 429 - 446.
S. S. Bhoosnurmath and S. R. Swamy, On certain classes of analytic functions, Soochow J. Maph., 20(1994), no.1, 1-9.
L. Brickman,T. H. MacGregor and D. R. Wilken, Convex hull of soee classical families of univalent ftnctions, Trans. Amer. Math. Soc., 156(1971), 91-107.
G. Chunyi and S. Owa, Certain classes of analytic functions in the unit disc, Ky5ngpook Math. J,, 33(1) (1993), 13–23.
A. Catas, On certain clars of p-valent functions defin%d "y new multiplier transformations, Proceddings book of the anternational symposium on geometric function theory and applications, August, 20-24, 2007, TC Isambul Kultur Univ., Turkey,241-250.
D. J. Hallenbeck and T. H. MacGregor, Linear problems and convexity techniques in geometric function theory, pitman, 1984.
W. Keopf, A uniqueness theorem for functions of positive real part, J. Math. Sci., 28(1994), 78-90.
Z. Lewandowski, S. S. Miller and E. Zlotkiewicz, Generating functions for some classes of univalent functions, Proc. Amer. Math. Soc., 56(1976), 111-117.
Li-Zhou and Qing-hua Xu, On univalent functions defined by the multiplier differential operator, Int. J. Math. Anal., 6(2012), no. 9-12, 735-742.
S. S. Miller and P. T. Mocanu, Differential subordinations: Theory and Applications. Marcel-Dekker, New York, 2000.
D. Raducanu and H. Orhan, Subclasses of analytic functions defined by a generalized differential operator, Int. J. Math. Anal., 4(2010), no. 1-2, 1-15.
D. Raducanu, On the properties of a subclass of analytic functions, Studia univ. “Babes-Bolyaiâ€, Math. LV, no. 3, (2010), 187-195.
D. Raducanu, On a subclass of univalent functions defined by a generalized differential operator, Math. Reports, 13(63), 2(2011), 197-203.
G. St. Salagean, Subclasses of univalent functions, Proc. Fifth Rou. Fin. Semin. Buch. Complex Anal., Lect. notes in Math., Springer -Verlag, Berlin, 1013(1983), 362-372.
R. Singh and S. Singh, Convolution properties of a class of starlike functions , Proc. Amer. Math. Soc., 106(1989), 1, 145-152.
S. R. Swamy, Inclusion properties of certain subclasses of analytic functions, Int. Math. Forum, 7 (2012), no. 33-36, 1751-1760.
S. R. Swamy, On univalent functions defined by a new generalized multiplier differential operator, J. Math. Computer Sci., 2(5) (2012), 1233-1240.
S. R. Swamy, Sandwich theorems for analytic functions defined by certain new operators J. Global Res. Math. Arch., 1 (2) (2013), 76-85.