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Abstract: Industry 4.0 sees the modern manufacturing being transformed due to the combination of automation and robotics, 

Internet of Things (IoT), Cyber-Physical Systems (CPS), and artificial intelligence (AI). The present paper gives a detailed view of 

how all these technologies together ensure smart factories through improved efficiency in operations, quality of products, and real-

time decision-making. Automation and AI-based analytics are able to optimize production processes, whereas advanced robotics 

and human-robot collaboration enhance flexibility, safety, and precision of tasks. IoT and CPS provide a continuous connection 

between physical objects and computerized systems, which contribute to the massive data collection and monitoring and prediction 

regulating control. The Digital Twin technology also enhances the process simulation, lifecycle optimization, and intelligent 

manufacturing management. By combining insights into recent developments, applications, and technological trends, the present 

paper demonstrates that the digital transformation is crucial in the formation of future manufacturing ecosystems and outlines the 

essential issues and research opportunities to apply smart manufacturing industrial automation in the future. 
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1 INTRODUCTION 

The Manufacturing automation in Industry 4.0 is shifting toward mass production and mass customization via human–robot 
collaboration. The diverse human–robot collaboration methodologies and their suitability for diverse manufacturing methods are 
discussed [1]. The benefits of cutting expenses in corporate processes have been demonstrated in a number of studies. the business 
automation process through the use of robots, but also tries to reduce business management costs through faster activities and more 
efficient processes that may support many businesses in the future. automation processes with business process management systems 
or focus on the conceptual application of IoT-based technology [2][3]. Smart automated inspection machines and adopting industrial 
automation in the textile manufacturing sector. Moreover, profitability is analyzed under uncertain demand scenarios when significant 
demand data are unavailable. We consider both triangular and trapezoidal demand patterns and their effects on total supply chain 
profit. 

Robotics is a multi-disciplinary domain which deals with study and use of robots. The word robot derived from 'robot', meaning 
'forced labour', was first used by Czech writer in 1921 is play ' Rossum's Universal Robots (RUR)'. Lead by science fiction, robots 
were considered as futuristic machines. Through technological advancements in various fields of electronics, mechanical, computer, 
information technology, scientists and engineers have been striving hard to practically realize these machines [4]. Conceptually, the 
IoT is a combination of virtual domains that use the internet to exchange information. Various real-world applications have adopted 
IoT-based technologies that have made life easy [5][6]. The wide applications of the IoT include smart healthcare, smart agriculture, 
automatic security systems, smart factories, and smart industries [7]. The smart industry has initiated an extremely positive effort by 
integrating IoT technology in the industrial domain. As predicted, advanced technologies and industry could solve numerous problems 
by implementing pervasive security countermeasures through the effective implementation of the IoT. 

The smart factory is a concept that makes intelligent use of robotics, automation, embedded systems, and information systems toward 
Industry 4.0. [8] It is considered a transformation from classical (standard) to intelligent manufacturing heading towards digital 
manufacturing and digital twin models supported by many emerging technologies such as Cyber-Physical Systems (CPS), Internet of 
Things (IoT), Big Data, cloud computing, and advanced AI, The combination of physical and virtual spaces is referred to as cyber-
physical systems (CPSs), and it aims to create a communicative interface between the digital and physical worlds by integrating 
computation, networking, and physical assets [9][10]. While the definition of CPS may vary based on perspectives and backgrounds, 
it is well-understood that the interconnection between the physical world is represented by hardware (e.g., sensors, actuators, robots) 
and cyber software (communication, networking and internet). CPS is at the core of Industry 4.0. 

1.1 Structured of the paper 

This paper is organized to cover key aspects of automation in smart factory. Section 2 explores Automation in smart factory, while 
Section 3 discuss Robotics in smart manufacturing. Section 4 examines CPS and IOT in smart factory manufacturing. Section 5 
provides a literature review of recent technologies and trends, and Section 6 concludes and future directions for smart factory 
automation. 
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2 AUTOMATION IN SMART FACTORY  

The automation of production processes. In the intermediate stage, the focus shifts to strengthening real-time data collection and 
process management through sensor networks and the Industrial Internet of Things (IIoT) [11]. In the advanced stage, artificial 
intelligence (AI)-driven predictive analytics and autonomous decision making are employed to optimize processes and maximize 
productivity. Recent studies have emphasized the technological integration of IoT, IIoT, and Industry 4.0 as the core enabler for smart 
manufacturing. 

2.1 Factory Autonomous Systems 

The factory automation systems to fix this kind of problem, the modern control theories involved with state-space and dynamic 
programming as the core was proposed and widely used in the engineering domain, particularly in aerospace. Therefore, information 
and communication technology (ICT), including sensor technology, computer, and intelligent technology, communication 
technology, and control technology, was developed to solve system automation problems. However, due to the increasing complexity 
of system functions and the diversification of system decision-making, automation technology could not fully meet production needs 
[12]. The demand for developing autonomy became increasingly vital to alleviate the dependence on human-related interactions, on 
the other hand, to improve the ability of individuals and systems to complete tasks independently. The development process of the 
automation system.  

The studies in the field of artificial intelligence (AI) are developed and widely discussed in the scientific community. These studies 
consider the theoretical aspects of the AI technologies and their applications in many areas of our society [13]. The methods of 
machine learning (ML) are a group of methods often used in AI, which allow for the prediction of new properties of data based on 
known properties discovered from the training data. One of the specific areas of ML is deep learning (DL). 

2.2 Smart Automation of PLC & SCADA 

The PLCs and communication interfaces that work with the thinger.io local server IoT platform are being studied. The research aims 
to demonstrate low-cost embedded platforms based on PLCs using Arduino and Raspberry Pi, which provide communication 
functions, variable pre-processing and control schemes, to note the programming limitations of traditional PLCs so that the Arduino 
and Raspberry Pi powered processors come forward as industrial solutions. A proposal comes about using open source hardware and 
software for SCADA (Supervisory Control and Data Acquisition) systems [14]. The system is composed of four segments: the master 
terminal unit (MTU), communication protocol, remote terminal unit (RTU), and field devices. The Modbus TCP facilitates data 
exchange among all the elements including the SCADA platform, which is on a different subnet than the process controllers to keep 
them safe from external network access. 

3 ROBOTICS IN SMART MANUFACTURING  

Robotics in manufacturing are well-known for enhancing productivity and product quality due to their durability, accuracy, and 
flexibility. DTs can describe, control, and display robotic systems’ behaviour in real time, enabling the intelligent perception, 
simulation, understanding, prediction, and optimization of manufacturing processes [15]. 

3.1 Automation of Tasks 

Task automation automates tasks using technology that humans would otherwise perform. Task automation has the potential to 
improve efficiency, reduce errors, and free up time for more complex and creative work, therefore becoming significantly important. 
Automating tasks can improve efficiency by reducing the time and effort required to complete them, allowing users to focus on more 
high-level and value-added tasks. Task automation also increases accuracy due to being less prone to errors and mistakes than manual 
tasks, which can improve quality and user satisfaction. Currently, task automation is being used in a wide range of industries, including 
manufacturing, healthcare, finance, and customer service. 

• Web Task Automation & Intelligent Agents: The user browses annotated websites and selects samples, and d.mix’s 

sampling mechanism generates the underlying service calls that yield those elements [16][17]. The limitations of this 

system are that the coexistence of two different sampling strategies confused the tool on how to separate a dataset; in a 

user study. 

• Mobile Task Automation & Intelligent Agents: The "Worker-to-Robot Replacement Time" refers to the estimated 

duration needed to fully replace a human worker with a robotic system in a specific role.  

• Desktop Task Automation & Intelligent Agent: The early task automation systems and intelligent agents which were 

developed were mostly desktop-based. The first task automation system using the programming-by-demonstration 

approach was Pursuit by Modano and Myers which enables users to create abstract programs directly containing variables, 

loops, and conditionals within the interface. 

3.2 Innovations in Design: AI-Driven Robotics 

Technology related to robotics is a fast-growing area that integrates many different areas like mechanical engineering, electronics, 
and computer science, and its ultimate goal is to create machines that can mimic, help or completely take over human workers in 
carrying out certain activities [18]. The foremost thing that comes to mind when designing a robot is the work that needs to be done 
in different challenging environments, for example in congested areas or around several obstacles, along with the possibility of 
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increasing the structural complexity to suit different tasks and unpredictable environments. Moreover, machines will have to 
constantly read and analyze vast amounts of intricate data before they can come up with the right decisions through their perception. 

• Autonomous Navigation & Decision-Making: The autonomous collision avoidance of ships must be developed. In this 
regard, artificial intelligence has developed rapidly in recent years, and the combination of robot technology and control 
technology has provided a new solution to the problem of path planning for ships and intelligent collision avoidance [19]. 

• Human-Robot Interaction (HRI): Human–robot interaction (HRI) is a fast-growing research field in robotics and seems to 
be most promising for robotics’ future and its effective introduction into more and more areas of everyday life. HRI research 
covers many fields and applications. 

3.3 Integration with Digital Twins 

The Digital Twin (DT) has become increasingly prominent in recent years, being widely discussed in the literature on Industry 4.0 
and conversations within large companies, particularly in the IT and digital sectors [20]. The term “Digital Twin” is evocative and 
partially self-explanatory, although not entirely accurate. As a result, two outcomes have emerged. Firstly, the concept has gained 
significant popularity across various application areas, surpassing its initial domains, such as aerospace engineering [21], robotics, 
manufacturing, and IT Furthermore, there is a lack of consensus concerning the exact definition of the term, its areas of application, 
and the minimum requirements to distinguish it from other technologies. 

• Real-Time Data Synchronization: Time synchronization was applied on the basis of paired timestamps from the peripheral 
and central nodes, with random timing variation reduced via a linear least squares’ regression algorithm [22]. The central node 
(or an offline algorithm, in our study) then multiplexes the received data from the peripheral nodes. 

• Process Optimization: Manufacturing processes transform raw materials into finished products and are broadly categorized 
in additive manufacturing (material is added layer by layer to create a shape where manufacturing data (process-relevant data, 
CAD models, systems, algorithms, and alike) are openly available for analysis and application across different workspaces. 

4 CPS AND IOT IN SMART FACTORY MANUFACTURING 

CPS can be considered a new generation of digital systems and their impact on the acceleration of technological progress is huge. A 
CPS arises from a tight integration of a cyber system and a physical process. It is defined as a system that deeply joins the capacity 
of computing and communication to control and interact with a process in the physical world [23]. Through the feedback loop between 
computing and the process, real-time interactions are increased with the physical system to monitor or control the physical entity in a 
secure, efficient, and reliable way in real time [24]. The building of CPSs in mobile robotics is particularly interesting. In designing 
and implementing advanced robotic heterogeneous hardware platforms for controlling an ever-larger multi-agent system, several 
challenges appear.  

4.1 Digital Twin Technology 

DT, as a tool for smart asset management, offers the opportunity to integrate physical objects with their virtual counterparts throughout 
their life cycle to replicate their real-world behaviour. A technology trend report identified DT as one of the top four emerging 
technologies among a selection of fifteen. It is a revolutionary and innovative technology that enables a quicker and more efficient 
management, monitoring. 

• Understand Digital Twin: DT is founded on some current technologies, including, but not limited to, 3D modelling, 

system simulation [25], and functional and behavioral prototyping. It has been used in aerospace and astronautics for 

implementation in as-built and next-generation aircrafts for years. 

• Digital Twin for Smart Cities: DTs hold significant potential for transforming the current urban governance model toward 

the development of smart cities and the rapid advancement of DT technology within smart cities is making valuable 

contributions to their development s automation and the benefits of IDP and RPA in insurance claims [26]. 

• Technological Drivers of Digital Transformation: AI), cloud computing, and big data analytics, has accelerated the 

digitalization of different systems and processes across various sectors including architecture, engineering, and 

construction Through digital transformation and integrated adoption of technologies [27].  

4.2 Smart Decision-Making Through CPS 

Smart Cities have emerged as a beacon of innovation, integrating advanced technologies to enhance the quality of life for residents 
while addressing pressing urban challenges [28]. At the heart of this transformation lie Cyber–Physical Systems (CPSs), which 
seamlessly integrate physical components with computational and communication capabilities to monitor, control, and optimize 
various aspects of urban life. In recent years, the concept of Symbiotic CPSs. 

4.3 Architecture and Components of CPS in Manufacturing 

Developing CPS for industrial applications, either designing new industrial CPS from scratch (“greenfield”) or upgrading existing 
physical systems (“brownfield”), is a challenging undertaking. The development is especially challenging because the consequences 
of a failing industrial CPS are typically severe, e.g., with respect to safety, productivity, cost, or company reputation. Smart integration 
Strategies for Digitalization.  
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4.3.1 Internet of things (IoTs) 

AI and the internet of things (IoTs) have started redefining the face of the pharmaceutical landscape and have, therefore, become 
transformational technologies [29]. AI consists of all those broad-ranging technologies, from machine learning to natural language 
processing, among other things, to afford advanced analytics with automation capabilities, thereby connecting data exchange with 
real-time monitoring without the involvement of any device or manual interference. Put together, these technologies can enable a 
quantum leap in operational effectiveness, quality of products, and regulatory compliance from the conventional, inefficient manual 
process followed in the industry. 

4.4 Manufacturing Automation of IoT-Driven Transformation 

This evolution not only enhances operational performance but also introduces new opportunities for innovation and growth in the 
manufacturing sector. These technologies can streamline the obtaining and processing of real-time the integration of cloud computing 
with IIoT enabled large-scale data storage and processing, allowing manufacturers to leverage big data analytics [30] for predictive 
maintenance and tool condition monitoring [31]. This period also saw the emergence of edge computing, where data processing was 
moved closer to the source (e.g., sensors) to reduce latency and improve real-time decision-making. 

4.5 IoT Integration with Robotics and CPS in Smart Factories manufacturing 

The strength of lies its recognition of the profound impact of the Fourth Industrial Revolution, or Industry 4.0, on the higher education 
system and, specifically, the training of future engineers for yet-to-exist professions [32]. It underscores the importance of nurturing 
soft skills for competitive professionals. The enumerated soft skills, including IT skills, information literacy, teamwork, flexibility, 
adaptability, learning, and cognitive skills, form a comprehensive framework for addressing the demands of the Fourth Industrial 
Revolution. 

4.6 AI-Powered IoT Analytics in Smart Factory Automation 

Artificial Intelligence (AI), the Internet of Things (IoT), and Digital Twins (DT) are interconnected technologies that enhance 
decision-making, automation, and system optimization across various domains AI refers to the development of algorithms and 
systems that enable machines to perform tasks that typically require human intelligence, such as learning, reasoning, and problem-
solving. IoT involves a network of physical devices embedded with sensors, software, and connectivity, allowing them to collect and 
exchange data over the internet [33][34]. AI-powered DT can simulate different scenarios, such as occupancy patterns or equipment 
failures, to identify potential inefficiencies and suggest proactive maintenance measures. Together, these technologies create smarter, 
more sustainable buildings that adapt in real-time to changing conditions. 

5 LITERATURE REVIEW 

Recent studies in this section show that the Automation in Smart Factories. Table 1 summarizes recent studies on Automation in 
Smart Factories, highlighting study, key findings, challenges, and future directions. 

Raffik, Balamurugan and Pandian (2025) discusses edge computing architecture and deployment models, its hardware and software 
components, and networking infrastructure. The objectives to review are to analyze how edge computing facilitates real-time decision-
making in automated industrial processes. The discourse is then fully addressed around the different core technologies, advantages, 
concerns, real-life instances, and future trends toward increasing efficiencies, lowering latencies, and making smart manufacturing 
possible [35].  

Chinnasamy et al. (2025) proposes novel technique in smart manufacturing system based on cloud computing with IIoT in energy 
efficiency using machine learning. Here the smart manufacturing process has been analysed based on IIoT with cloud computing 
network, where the energy efficiency is analysed using virtual machine-based reinforcement markov chain based linear regression. 
Experimental analysis has been carried out in terms of latency, energy efficiency, task response time, accuracy. proposed technique 
obtained 97% of Latency, 95% of Energy efficiency, 98% of Accuracy, 94% of Task response time [36]. 

Bi et al. (2025) discusses the relevance of Internet of Things (IoT) to Sustainable Mechatronics. The impact of IoT on sustainable 
mechatronic systems is discussed, and the focus is on how IoT is used to empower mechatronic systems by integrating with more 
smart things over Internet. IoT-based reference architecture is presented, and critical enabling technologies are explored. Functional 
Requirements (FRs) of sustainable mechatronic systems are defined in terms of openness, scalability, dynamics, privacy, and security. 
Satisfying these FRs require IoT-based solutions in data acquisition, transmission, processes, and utilization [37].  

Amiri, Steindl and Hollerer, (2024), which included vendors, integrators, and asset owners, focused on secure and safe infrastructures, 
system architectures, and risk management. Our findings revealed limited industry awareness and usage of the Reference Architecture 
Model Industry (RAMI) 4.0, emphasizing the need for an economically viable, holistic approach to integrated security and safety by 
design. Moreover, we introduced a comprehensive ontology for safety, security, and operation requirements in the IT/OT 
convergence. Building on top of these works, we introduce a model-based engineering approach to implement integrated safety and 
security while designing industrial Cyber-Physical Systems (CPS). We model these systems precisely using System Modeling 
Language (SysML) 2.0 specification and verify the requirements [38].  

Jochman et al. (2024) explores the integration of augmented reality into robotic manufacturing systems, emphasizing the enhancement 
of connectivity, real-time data processing, and interactive visual interfaces. Utilizing HoloLens 2 headsets equipped with OPC UA 
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clients, the system establishes a direct interface between operators and the digital and physical components of the manufacturing 
environment. The architecture employs augmented reality to facilitate sophisticated operational control and visualization, ranging 
from robotic additive manufacturing to complex tasks like robotic sanding and screwing with integrated camera systems [39]. 

Onu, Pradhan and Madonsela (2024) explores recent information technology solutions and prospects of IoT integration and DT 
technology within smart manufacturing environments rough a comprehensive review of literature and expert insights, this research 
posits the potential of these technologies in optimizing manufacturing processes, enhancing productivity, and enabling predictive 
maintenance strategies. Additionally, the study explores the critical role of data analytics in ensuring seamless integration and efficient 
functioning of IoT and DT systems. This is a contribution to the body of literature on smart manufacturing [40].  

Monteiro and Garcia (2023) Things” in industrial areas, find a technology ready to assist in monitoring and tracking the performance 
of various assets in industrial automation. This article focuses on the development of a microprocessor device created to monitor 
control valves with spring/diaphragm pneumatic actuators, commonly found in industrial process control installations. The proposed 
Industrial Internet of Things (IIoT) device is currently being developed and tested in the Industrial Process Control Laboratory of 
Escola Polytechnical of the University of Sao Paulo (LCPI-EPUSP) [41] 

TABLE I.  COMPARATIVE REVIEW OF EMERGING TECHNOLOGIES IN SMART MANUFACTURING AND INDUSTRIAL AUTOMATION" 

References Study On Approach Key Findings Challenges / 

Limitations 

Future Direction 

Raffik, 

Balamurugan, 

and Pandian 

(2025)  

Edge 

computing in 

industrial 

automation 

Architecture 

analysis, 

component 

study, real-world 

applications 

Enables real-time 

decision-making, 

reduces latency, 

improves efficiency in 

smart manufacturing 

Concerns related 

to hardware-

software 

integration, 

network 

infrastructure 

AI-based analytics, 

energy-efficient 

devices, seamless 

interoperability 

Chinnasamy 

et al. (2025)  

Energy-

efficient smart 

manufacturing 

using IIoT and 

cloud 

ML-based 

virtual machine 

with Markov 

chain regression 

Achieved 97% latency, 

95% energy efficiency, 

98% accuracy, 94% 

response time 

Complex 

modeling, 

potential 

scalability issues 

Optimized integration of 

ML with IIoT and cloud 

for improved energy 

models 

Bi et al. 

(2025) 

IoT and 

sustainable 

mechatronics 

IoT-based 

reference 

architecture and 

FRs 

IoT improves openness, 

scalability, and dynamic 

adaptability of 

mechatronics 

Challenges in 

meeting privacy 

and security FRs 

Focus on IoT solutions 

for efficient data 

processes and system 

interoperability 

Amiri, 

Steindl, and 

Hollerer 

(2024) 

Secure 

architectures in 

CPS and RAMI 

4.0 

SysML 2.0-

based model 

engineering 

Developed integrated 

model for safety and 

security, low RAMI 4.0 

adoption noted 

Lack of 

awareness of 

RAMI 4.0, 

fragmented 

security designs 

Holistic model-driven 

security and safety in 

CPS systems 

Jochman et al. 

(2024) 

Augmented 

Reality (AR) in 

robotic 

manufacturing 

AR via Hololens 

2 and OPC UA 

clients for 

control and 

visualization 

Enhanced interaction, 

optimized workflows, 

real-time data control 

Hardware 

dependency, 

integration cost 

Broader use of AR in 

additive manufacturing 

and visual interfacing 

Onu, 

Pradhan, and 

Madonsela 

(2024) 

IoT and Digital 

Twin (DT) in 

smart 

manufacturing 

Literature 

review and 

expert analysis 

Optimizes 

manufacturing, 

improves predictive 

maintenance, highlights 

analytics role 

Data privacy, IP 

rights, AI ethics 

not fully 

addressed 

Explore ethical AI, data 

ownership frameworks, 

fair use standards 

Monteiro and 

Garcia (2023) 

IIoT for control 

valve 

monitoring in 

industry 

Development of 

custom IIoT 

microprocessor 

device 

Efficient asset tracking 

in pneumatic actuator 

systems 

Currently under 

testing, lab-scale 

implementation 

Field validation, 

scalability for industrial 

deployment 

6 CONCLUSION AND FUTURE WORK 

The recent rapid changes of Industry 4.0 have also resulted in highly intelligent, connected, and autonomous production spaces of 
traditional manufacturing. The paper has discussed the underlying technologies behind this change, which include automation, 
robotics, IoT, CPS, AI and Digital Twins, and their combined ability to improve productivity, flexibility and decision making in smart 
factories. The AI-based analytics and advanced control architecture created by the modern-day automation systems have provided 
real time monitoring, predictive optimization and less human reliance to achieve routine operations. The use of robotics, which has 
been enhanced by advancements in sensing, pathways, and human robot interaction, remains to reinvent the way things are done and 
the safety of the workplace. Simultaneously, IoT and CPS offer the architectural support of the uninterrupted communication of 
physical objects and cyber systems to coordinate the workflows, obtain massive amounts of data and control processes in real time. 
Digital Twin integration also enhances the process of simulation-based planning, lifecycle management, and ongoing optimization of 
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different industrial processes. These technologies combined create the basis of the smart factory ecosystem and reflect the bright 
future of contemporary manufacturing.  

The future research step should be to enhance the security, scalability and interoperability of IoT- and CPS-based manufacturing 
systems as factories become inter-networked. Higher levels of AI models such as self-learning and federated learning techniques are 
required to manage data paucity and privacy issues in industrial context. The Digital Twin should also be improved to make 
autonomous decisions, coordinate multi-agents, and predictive analytics in real-time in future research. Also, it will be needed to 
expand safe and effective human-robot collaboration system to facilitate the shift to more flexible, human-oriented, and resilient smart 
manufacturing systems. 
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