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Abstract: The integration of the Industrial Internet of Things (IIoT) with AI-based decision-making frameworks is reshaping 

industrial operations by enabling continuous monitoring, intelligent automation, and context-aware optimization. As IIoT 

environments produce high-frequency, heterogeneous sensor data, industries increasingly depend on advanced machine learning 

models and data-driven reasoning systems to extract actionable insights, anticipate system failures, and support real-time operational 

decisions. Current research shows considerable progress in areas such as predictive maintenance, anomaly detection, and adaptive 

control, where AI models enhance accuracy, responsiveness, and system reliability. However, several challenges remain, including 

severe data imbalance, sensor degradation, dynamic operating conditions, limited edge-level computation, and concerns regarding 

transparency and trust in automated decisions. Addressing these limitations requires scalable AI architectures, interpretable models, 

and efficient fusion of multivariate sensor signals to support robust decision pipelines. Emerging approaches such as edge-cloud 

collaborative intelligence, reinforcement-driven industrial control, and federated analytics demonstrate increasing potential to 

elevate situational awareness and autonomous responses in complex IIoT networks. By synthesizing current developments, 

technological gaps, and practical constraints, the discussion highlights how AI-enabled decision-making continues to evolve as a 

central component for building intelligent, efficient, and resilient industrial ecosystems. 

Keywords: Artificial Intelligence, Industrial IoT, Edge-Fog-Cloud Computing, Federated Learning, Explainable AI, Decision 

Making. 

1 INTRODUCTION 

The physical world is transformed into being digitized and make everything connected. An explosion of smart devices and 
technologies has allowed mankind to be in constant communication anywhere and anytime. The Internet of Things (IoT) is the 
network of physical objects devices, instruments, vehicles, home appliances, buildings and other items embedded with electronics, 
circuits, software, sensors and network connectivity that enables these objects to collect and exchange data [1]. The Internet of Things 
allows objects to be sensed and controlled remotely across existing network infrastructure, creating opportunities for more direct 
integration of the physical world into computer-based systems, and resulting in improved efficiency and accuracy. 

The smart use of IoT in industries, which is named Industrial IoT (IIoT) where IoT is used to develop industrial applications using 
various sensors and wireless devices. To cater to the high demands and infrastructural needs of industries, IoT is widely used in 
industry to make an industry a smart one, can be named as a smart factory [2]. This fulfils the demand of the 4th industrial revolution 
termed as 'Industry 4.0'. IoT and Cyber-Physical Systems (CPS) are key elements of Industry 4.0. Along with IIoT, artificial 
intelligence, big data, cloud computing, cyber security, system integration, simulation, augmented reality, and additive manufacturing 
are pillars of industry 4.0. Industry 4.0 and the Industrial Internet of Things (IIoT) are interconnected frameworks that make use of 
cyber–physical systems and advanced data analytics to enhance industrial operations through autonomous decision-making and real-
time optimization [3][4].  

AI facilitates real-time data analysis, intelligent decision-making, and predictive analytics in addition to enhancing the security of the 
IIoT ecosystem against substantial cyber threats. Furthermore, artificial intelligence (AI) and machine learning algorithms play a 
crucial role in optimizing resource allocation, ensuring grid stability and reliability, and enhancing energy usage planning. The true 
value of the IIoT can only be fully realized by integrating Artificial Intelligence (AI) models into embedded platforms, including 
microprocessors and microcontrollers, which underpin the embedded devices and systems commonly used in the industrial 
environment [5]. Real-time analysis of industrial data is made possible by AI in IIoT decision-making, enabling autonomous, adaptive, 
and predictive operations. By utilizing machine learning, deep learning, and optimization techniques across distributed industrial 
environments, it improves productivity, decreases downtime, and facilitates intelligent resource management. 

The purpose of this paper is to provide an overview of the current framework and AI-based decision-making techniques in industrial 
IoT networks, including their applications, limitations, and potential. It makes an attempt to identify problems before outlining 
potential avenues for further study into scalable, dependable, and real-time AI solutions for the sector. 
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1.1 Structure of the paper 

The structure of this paper is as follows: Section 2 provides an overview of Industrial IoT networks. Section 3 explains AI 
fundamentals in IIoT. Section 4 presents AI-driven decision-making techniques. Section 5 reviews related literature. Section 6 
concludes the study and outlines future research directions for advancing AI-enabled IIoT. 

2 ESSENTIALS OF INDUSTRIAL IOT NETWORKS 

The network architecture of an Industrial IoT (IIoT) is often multi-layered, namely, perception layer, network layer, middleware, and 
application layer, which allow easy data gathering, transmission, computing, and service providing. Interoperability and reliable 
connectivity through protocols such as MQTT, CoAP, Bluetooth, ZigBee, 5G, and other such well-known protocols and standards 
such as OPC- UA and ISO/IEC 30141 [6]. Even though IIoT systems are beneficial, their disadvantages are poor connectivity, issues 
related to integrating IT and OT, security vulnerability, data storage requirements, and complexity of analytics. All these are some of 
the issues that need to be addressed in order to achieve efficient, secure, and scalable industrial automation in the contemporary smart 
manufacturing industry. 

2.1 IIoT Architecture and Component 

 
A four-layer architecture that may be applied to various IIoT systems. It can accommodate the fundamental components of a three-
layer IIoT architecture, while also readily expanding this four-layer architecture with additional components to depict a five-layer 
IIoT architecture with finer granularity. The Figure 1 shows, of a three-layer IIoT architecture, while also readily expanding this four-
layer architecture. 

 

Figure 1: A Four-layer IIoT Architecture 

2.1.1 Perception Layer 

The perception layer, which includes a variety of sensors for collecting various kinds of human-machine collaborative production 
context data, is thought to be the lowest physical layer of the IIoT architecture. The perception layer is made up of sensors and 
actuators that acquire and interpret context data to carry out tasks (e.g., retrieve location and acceleration). A variety of IIoT 
applications require the perception layer. To connect the physical and cyber worlds, a variety of end devices can be employed at the 
perception layer. Near Field Communications (NFC), RFID, wireless sensors and actuators, RFID, and some smart devices are 
examples of typical end devices. 

2.1.2 Network Layer 

The network layer encapsulates large amounts of protocols (e.g., MQTT, COAP, ZigBee, Ethernet). For the protocols of the IIoT, it 
can generally be divided into two categories, namely communication protocol (e.g., Bluetooth and ZigBee) and transmission protocol 
(e.g., High-Speed Ethernet (HSE), Modbus TCP/IP, and ProfiNet), performing secure information sharing. Cloud computing and the 
Internet are the fundamental components of this layer [7]. Additionally, Internet gateway devices work in this tier by utilizing the 
most recent communication technologies to deliver network-connected services. 

2.1.3 Middleware Layer 

This third-level layer, commonly called the support layer, is presented. It offers IIoT systems database and cloud services for the 
application layer to use further. The middleware layer employs advanced computational techniques to evaluate, process, and store 
data. It can use cutting-edge technologies such as cloud computing and big data analytics to automatically analyze and compute the 
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information that has been acquired. As described in the previous section. Middleware has become an effective tool for researchers to 
achieve interoperability between systems.  

2.1.4 Application Layer 

The termination layer of the IIoT is another name for the application layer. By preserving data integrity, secrecy, and authentication, 
this layer performs as the bridge between users and applications. This layer accesses the middleware layer’s data and offers multiple 
services to the users [8]. Additionally, it is integrated with commercial organizations to access smart applications. Using internet-
capable devices such as smartphones, tablets, PCs, wearable technology, and many other smart gadgets, users can access the smart 
services at this layer. 

2.2 Communication Protocols and Standards 

These protocols are essential for IIoT which enable devices to communicate with each other and with centralized systems to ensure 
smooth operation across various networks and environments [9]. Below are some of the key protocols:  

• Message Queuing Telemetry Transport (MQTT): A lightweight protocol ideal for low-bandwidth networks, commonly 

used in IoT applications where efficiency is critical.  

• Constrained Application Protocol (CoAP): Designed for constrained devices and low-power networks, especially 

suitable for IoT applications.  

• Advanced Message Queuing Protocol (AMQP): Used in more complex environments for reliable messaging between 

systems.  

• Bluetooth and Zigbee: Protocols used for short-range communication between IoT devices, with applications in home 

automation and sensor networks [10].   

• 5G and Low Power Wide Area Networks (LPWANs): Key protocols for large-scale IIoT applications, offering high 

speed, low latency, and wide area coverage for industrial use. 

Standards ensure interoperability between devices and systems in IoT/IIoT environments, which is critical for the seamless integration 
of new technologies and large-scale deployments [11]. Common IoT/IIoT standards are as follows: 

• International Organization for Standardization (ISO)/ International Electrotechnical Commission (IEC) 30141: 

The international standard for IoT reference architecture, ensuring the security, privacy, and reliability of IoT systems.  

• IEEE 802.15.4: A key standard for low-rate wireless personal area networks, widely used in IoT communication. 

• Open platform communications unified architecture (OPC-UA): An M2M communication standard commonly used 

in industrial automation.  

• International Standard for the Integration of Enterprise and Control Systems (ISA-95): A standard for the integration 

of enterprise and control systems, particularly relevant to IIoT applications. 

2.3 Challenges Faced by Industrial IoT 

The  physical  world  is  slowly  transforming  into  digital  world  from ordinary  world because of  smart technology  and  devices 
which  allows user  and  devices  to  be  in  constant  communication  with  each  other.  It’s now  more efficient  because  of artificial 
intelligence,  machine learning, etc [12]. This arises new challenges and opportunities for business leaders. There  are few challenges  
that are faced by IIoT are depicted in Figure 2 & explained as follows:.  

 

Figure 2: The Challenges in IIoT 
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• Connectivity and Visibility:  Due to improper or poor connectivity the critical IIoT-implementation challenges arise. 

Joining of machine with IIoT is a challenging problem, and it’s necessary to ensure that these machines are working at an 

optimal level and it’s important to monitor machines to enhance the production level. Different units are responsible for 

the proper working of IIoT machines, and there might be a problem of coordination arises as a result of power blackouts, 

internet outages and physical or technical errors. 

• IIoT Integration: - Integration of the information technology (IT) is another difficulty faced by the IIoT execution. 

Integration between these two technologies suffers due to essential connectivity and synchronization. 

• Security: - As enjoy several comforts from the IoT, must also take care about safety and privacy in smart devices [13]. 

must give main priority to security while designing the IoT devices. Privacy of personal data and privacy of physical well-

being are including in it. Security is the biggest challenge for IIoT technology team since a small or regular threat could 

disintegrate the whole enterprise.  

• Data Storage: - Data storage is another major challenge for any company or enterprise. The data which was stored in past 

are used for the all forecasted activities. Today none of the enterprise uses an old conventional method to tackle data which 

mostly would be analyzing high-frequency data, observe it, and punctually thrown it away [14]. It is compulsory for any 

company to adopt proper plan for a secure storage of data before run IIoT in full mode.  

• Analytics Challenges: It’s necessary for Data Analytics partners to include data processing, cleansing, and representation 

while executing IoT architecture. Enough space for functionality factor is left surely and this factor add real-time or 

predictive analytics to an IoT solution simply. 

3 ROLE OF ARTIFICIAL INTELLIGENCE IN IIOT 

In IIoT, Artificial Intelligence (AI) uses techniques such as machine learning, deep learning, or reinforcement learning to enable 
intelligent decision-making and optimize decision-making through data [15]. AI implementation in IIoT utilizes layers for deployment 
via edge, fog, and cloud, balancing real-time latency, localized intelligence, and sizeable data processing. Edge nodes provide the 
ability to acquire and pre-process data, fog nodes allow for the analysis of data at the local regional level, while cloud provides a 
unified data set for all edge devices for optimization on a more global scale. The AI models deployed with IIoT must be able to 
provide real-time results, must be lightweight, and must aid in human comprehension, which can be accomplished through a 
combination of course-grained pruning, quantization, and knowledge distillation. 

3.1 AI Paradigms Relevant to IIoT 

Artificial Intelligence (AI) plays a critical role in Industrial Internet of Things (IIoT) by enabling intelligent decision-making, 
predictive insights, and autonomous operations [16]. Various AI paradigms, including machine learning, deep learning, and 
reinforcement learning, are leveraged to process massive amounts of industrial data from sensors, machines, and networks. These 
paradigms help optimize production, improve efficiency, and reduce downtime in complex industrial environments. 

• Machine Learning (ML): Machine learning allows IIoT systems to automatically learn from data rather than relying on 

explicit programming. By analyzing historical and real-time sensor, device, and operational data [17], ML models can 

identify patterns, correlations, and anomalies that help in predictive maintenance, process optimization, and intelligent 

decision-making. 

• Supervised and Unsupervised: ML approaches can be categorized into three main types. Supervised learning uses labeled 

datasets to train models for tasks such as quality inspection or fault detection [18]. Unsupervised learning identifies hidden 

patterns in unlabeled data, useful for clustering devices or detecting unusual behaviors. 

• Deep Learning (DL): Deep learning extends traditional ML by employing multi-layered neural networks capable of 

handling large-scale, high-dimensional data. DL can process complex information from IIoT environments, including 

images from inspection cameras, vibration signals from machinery, and sensor fusion data. Its capability to automatically 

extract hierarchical features makes it ideal for applications like anomaly detection, predictive maintenance, and process 

automation. 

• Reinforcement Learning (RL): Reinforcement learning is particularly suited for dynamic and uncertain IIoT 

environments. By continuously interacting with machines, robots, or production systems, RL agents learn optimal strategies 

over time. The reward-punishment mechanism enables systems to adapt to changing conditions, optimize energy 

consumption, reduce downtime, and improve overall operational efficiency. 

 

3.2 Edge, Fog, and Cloud AI Deployment Models 

The architecture for Cloud-Edge AI integration in IIoT follows a layered approach, combining the strengths of both cloud and edge 
computing. This architecture is designed to optimize real-time data processing, enhance system efficiency, and improve overall 
industrial automation [19]. It consists of three key players: the edge layer, the fog layer, and the cloud layer, each with distinct roles 
and responsibilities, as illustrated in Figure 3. 
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Figure 3: Cloud-Edge AI Architecture for IIoT 

3.2.1 Edge Layer 

The edge layer is the closest to the physical world, consisting of IIoT devices such as sensors, actuators, and embedded systems that 
are directly attached to industrial equipment. This layer plays a crucial role in ensuring real-time responsiveness and reducing data 
transmission overhead by processing data locally. At the edge, data acquisition is performed by sensors that collect raw information, 
such as temperature, vibration, pressure, and other operational parameters [20]. To improve data quality and minimize noise, local 
data pre-processing is conducted, including filtering, cleaning, and basic aggregation of sensor readings. This reduces the volume of 
data that needs to be transmitted to higher layers, saving bandwidth and improving efficiency. 

3.2.2 Fog Layer 

The fog layer serves as an intermediary between the edge and the cloud, providing additional computational and storage resources 
closer to the data source. This layer is typically implemented on industrial gateways, local servers, or edge clusters, offering more 
processing power than edge devices while maintaining lower latency compared to cloud services [21]. One of the primary 
responsibilities of the fog layer is data aggregation and analysis—collecting information from multiple edge nodes, identifying 
patterns, and performing regional-level analytics. This helps detect localized trends that may not be apparent at an individual device 
level. 

3.2.3 Cloud Layer 

 The cloud layer acts as the central hub for large-scale computing, storage, and AI-driven insights. It provides a global perspective of 
the entire IIoT ecosystem by aggregating data from multiple industrial sites and performing comprehensive analytics [22]. One of its 
key functions is global data aggregation and analysis, where data collected from thousands of edge and fog nodes is combined to 
generate insights at an organizational level. This enables companies to monitor overall production efficiency, detect long-term trends, 
and make data-driven decisions for optimizing operations. 

3.3 AI Model Requirements for IIoT 

In the case of Industrial IoT, AI models are required to be adjusted to the limits of industrial processes and be highly reliable. Real-
time is necessary because most applications of IIoT demand real-time responses daily, including anomaly detection, predictive 
maintenance and process control, to avoid production downtimes that could lead to quality or safety issues [23]. The low weight is 
also essential, as most of the IIoT devices, especially edge-based ones, have a weak processing capacity, memory, and energy 
provisions.  

The model pruning, quantization, and knowledge distillation are the techniques that are commonly used to decrease the number of 
parameters and ensure the level of accuracy. Lastly, interpretability, i.e., being able to make sense of AI decisions, is essential in the 
industrial context where operators and engineers need to comprehend the rationale of AI decisions in order to be grounded, support 
trouble shooting, and optimal legal compliance [24]. A trade-off between these three needs allows the implementation of AI systems 
that can be technically effective and operationally reliable in practice when it comes to IIoT.  

4 TECHNIQUES FOR DECISION MAKING IN IIOT 

The ultimate objective of integrating AI-enabled smart sensors in IIoT is to facilitate accurate and timely data-driven decision-making. 
This requires the framework to provide meaningful insights into the operational status of industrial processes, enabling predictive 



Mr. Deepak Mehta, Journal of Global Research in Mathematical Archives 

© JGRMA 2025, All Rights Reserved   48 

maintenance, process optimization, and anomaly detection. [25]. To ensure reliable data-driven decision-making, the framework 
should integrate advanced AI techniques, including machine learning (ML) and deep learning (DL), for processing and analyzing 
sensor data [26]. ML models can be used for predictive analytics, such as forecasting equipment failures and optimizing resource 
utilization. 

4.1 Deep Learning Integration for Intelligent Decision-Making in IIoT 

Deep Learning is considered to be one of the most powerful techniques in the domain of artificial intelligence (AI). The integration 
of DL methods in smart industries can upgrade the smart manufacturing process into a highly optimized environment by information 
processing through its multi-layer architecture. DL approaches are very helpful due to their inherited learning capabilities, underlying 
patterns identification, and smart decision-making. The biggest advantage of DL over conventional ML techniques is automatic 
feature learning. With this option, there is no need to implement a separate algorithm for feature learning [27]. The deployment of 
DL techniques can be very effective to perform the types of aforementioned analysis in smart industries. 

 

4.2 Federated Learning for privacy-preserving decision-making 

Federated Learning (FL) is a distributed machine learning model that trains local models on the user side and aggregates them with a 
central manager. FL allows devices to collaboratively train shared models without having to exchange their local private data. FL 
model training is divided into three phases. First, data are locally collected and trained. Second, the local model is uploaded and 
aggregated. Finally, the aggregation forms a global model, which is then distributed to local devices [28]. By allowing AI models to 
be trained cooperatively across dispersed devices without exchanging raw data, federated learning facilitates privacy-preserving IIoT 
decision-making. This method lowers the risks associated with data exposure while utilizing a variety of real-time industrial datasets 
to enhance model accuracy and flexibility. 

4.3 Explainable AI (XAI) for Transparent Decisions in Industry 

Critical processes like production optimization, equipment maintenance, and safety control are frequently impacted by decisions made 
in industrial IoT environments [29]. Even though AI models, especially deep learning, can produce highly accurate results, it can be 
difficult to comprehend how decisions are made because of their "black-box" nature. This is addressed by Explainable AI (XAI), 
which gives managers, engineers, and operators interpretable insights into AI model outputs so they can validate and trust automated 
decisions. In the IIoT, where stakeholders must validate decision logic prior to execution, XAI is especially crucial for regulatory 
compliance, fault diagnosis, and risk mitigation. By revealing the logic behind predictions, methods like feature attribution, model-
agnostic explainers (like LIME and SHAP), and visualization tools contribute to the transparency of AI systems.  

5 LITERATURE REVIEW 

This section presents a literature review on AI-driven decision-making in Industrial IoT networks, covering IIoT sensor integration 
with cloud analytics, distributed TinyML frameworks, agent-based disaster prediction systems, hybrid decision-making models, NF-
based communication methods, blockchain applications, and secure IIoT data transmission, highlighting advancements, challenges, 
and future research directions. 

Khan et al. (2025) Industrial Internet of Things (IIoT) networks, essential to modern manufacturing, logistics, and critical 
infrastructure, face unprecedented cybersecurity challenges. As IIoT networks expand, integrating countless interconnected devices, 
they are increasingly exposed to cyber threats that exploit system vulnerabilities, jeopardizing data integrity, operational continuity, 
and safety. Traditional security measures, while effective in standard IT environments, often lack the adaptability and real-time 
responsiveness needed for IIoT's unique requirements. In response, Artificial Intelligence (AI) has emerged as a transformative 
solution, offering enhanced detection, prediction, and response capabilities tailored to the complex IIoT landscape. This chapter 
explores the critical role of AI-driven approaches in advancing cybersecurity for IIoT networks [30]. 

Jovith et al. (2024) presents the use cases and benefits of IIoT sensor networks for gathering actionable insights and operational data 
from industrial machinery. These networks might benefit from cloud computing to better manage and analyze the massive amounts 
of data the produce. It highlights the evolution of conventional industrial landscapes into linked ecosystems that may provide 
insightful decision-making data. The data for users to use sensor networks to monitor equipment and improve productivity. Reducing 
equipment downtime by 30% and increasing operational efficiency by 20% are both made potential by combining Industrial IoT 
sensor networks with cloud analytics. With an 80% success rate, maintenance techniques save a ton of money and make things more 
efficient [31]. 

Yuan and Eddie Law (2024) have designed a set of function calls for enabling the distributed deployments of neural network models 
across multiple resource-constraint sensing devices in DTSN. It results in facilitating autonomous data analysis and decision-making 
while reducing reliance on Cloud services. With the popular Bluetooth technology, Bluetooth mesh networks are utilized for inter-
device communications and support dynamic memory management without compromising model precision. Their model offers on-
device model training, fast deployment, and provides inferences at an IoT gateway node. The experiment results indicate that the 
DTSN achieves high accuracy in both regression and classification tasks. It demonstrates the feasibility of training and inference on 
embedded devices. [32]. 
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 Chekati, Riahi and Moussa, (2024) introduces the SADM-Smart Object framework, a cutting-edge, agent-based conceptual and 
methodological IoT framework designed for self-adaptation and decision-making, specifically applied to the context of natural flood 
disasters. The primary objective of this framework is to monitor key climate indicators such as rainfall, humidity, temperature, 
pressure, and water levels and discern their temporal correlations to enhance flood prediction accuracy. It offers a strong layered 
architecture complemented by efficient tools for constructing IoT systems, integrating machine learning classifiers for data 
classification, and agent-based approaches for decision-making [33]. 

Cherif and Frikha (2023) aims to investigate the significance of IoT systems in various domains, focusing specifically on the industrial 
application, emphasizing the pivotal role of reliable and efficient device connectivity within such systems. To address the challenges 
posed by uncertainty and ambiguity in real-life scenarios, proposed the integration of rough set theory with multi-criteria decision-
making approaches to evaluate and classify IoT devices in the industrial domain. The utilization of the proposed hybrid multi-criteria 
group decision-making approach allows to effectively model and handle the uncertainty arising from expert assessments [34].   

Gunasekaran et al. (2023) intends to create an NF-based communication system for IIoT platforms to leverage those benefits. The 
proposed model includes smart decision-making procedures to deal with communication issues. Compared with the many methods 
already in use, the suggested mechanism’s functional viability in the automated system is found to be optimal. Outcomes from 
simulations reveal that the suggested method has improved the accuracy and communication reliability of the IIoT platforms in 
comparison with the previous methods. Aside from these, the suggested model keeps the throughput of the local automation unit at 
96.03% and the throughput of the production hall at 95.58% on average while maintaining the lowest average PLR of about 26.48% 
[35] . 

Table 1 presents a summary of the literature review, highlighting each study’s focus, approach, key findings, challenges, and proposed 
future directions. 

TABLE I.  SUMMARY OF RESEARCH GAPS IN AI-BASED DECISION-MAKING FOR INDUSTRIAL IOT (IIOT) SYSTEMS 

Reference Study On Approach Key Findings Challenges Future Direction 

Khan et al. 

(2025) 

Cybersecurit

y challenges 

in Industrial 

IoT (IIoT) 

networks 

AI-driven 

security 

approaches for 

IIoT 

environments 

Demonstrates that AI 

enhances detection, 

prediction, and 

dynamic response for 

IIoT cyber threats; 

highlights limitations of 

traditional security in 

real-time IIoT settings 

Difficulty integrating 

AI models into 

resource-constrained 

IIoT devices; high 

data heterogeneity; 

real-time adaptation 

issues 

Develop lightweight AI 

algorithms for edge-based 

threat detection; explore 

federated learning for 

secure distributed 

analytics; enhance real-

time anomaly detection 

systems 

Jovith et al. 

(2024) 

Use cases 

and benefits 

of IIoT 

sensor 

networks 

integrated 

with cloud 

analytics 

IIoT sensor 

networks 

combined with 

cloud-based 

data analysis 

Significant 

improvements in 

productivity and 

reduced downtime 

(30%); operational 

efficiency increased by 

20%; maintenance 

techniques achieve 80% 

success rate 

High dependency on 

cloud platforms; 

latency and 

bandwidth 

limitations; 

security/privacy 

concerns in cloud-

based IoT 

Move toward hybrid edge-

cloud analytics; explore 

privacy-preserving data 

processing; develop 

autonomous maintenance 

models 

Yuan & 

Eddie Law 

(2024) 

Distributed 

neural 

network 

deployment 

in 

Distributed 

Tactical 

Sensor 

Networks 

(DTSN) 

On-device 

model training 

using 

Bluetooth 

mesh networks 

for distributed 

inference 

Achieves high accuracy 

in 

regression/classificatio

n tasks with reduced 

reliance on cloud 

services; supports 

dynamic memory 

management 

Limited 

computational 

resources on sensing 

nodes; 

communication 

constraints in mesh 

networks; energy 

consumption issues 

Develop ultra-efficient 

neural architectures; 

optimize distributed 

training strategies; 

improve mesh 

communication protocols 

for scalability 

Chekati, 

Riahi & 

Moussa 

(2024) 

Agent-based 

IoT 

framework 

for natural 

flood 

disaster 

monitoring 

SADM-

SmartObject: 

layered 

architecture 

with ML-

based 

classification 

and agent-

driven 

decision-

making 

Effective in monitoring 

climate indicators and 

improving flood 

prediction accuracy; 

strong conceptual 

framework for IoT-

based decision systems 

Lack of real-world 

deployment 

validation; data noise 

and environmental 

unpredictability; 

integration 

complexity with 

diverse sensors 

Advance real-world pilot 

studies; incorporate deep 

learning for improved 

prediction; expand 

framework to multi-hazard 

disaster management 
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Cherif & 

Frikha 

(2023) 

Evaluating 

and 

classifying 

industrial 

IoT devices 

under 

uncertainty 

Hybrid Rough 

Set Theory + 

Multi-Criteria 

Decision-

Making 

(MCDM) 

Effectively models 

uncertainty in device 

classification; improves 

assessment accuracy in 

industrial IoT systems 

Limited scalability for 

large-scale IoT 

networks; 

computational 

complexity of hybrid 

models; reliance on 

expert input 

Develop automated 

uncertainty-aware 

evaluation tools; enhance 

scalability with big-data 

methods; integrate AI-

driven decision support 

Gunasekar

an et al., 

(2023) 

NF-based 

communicat

ion model 

for IIoT 

platforms 

Smart 

decision-

making 

communicatio

n architecture 

improving 

reliability and 

throughput 

Achieves ~96% 

throughput and 

improves 

communication 

reliability; reduces 

packet loss ratio to 

~26.48% 

PLR still relatively 

high; limited 

adaptability under 

extreme network 

stress; lacks 

hardware-level 

validation 

Further optimize reliability 

mechanisms; integrate AI-

based network 

optimization; validate 

model via real industrial 

testbeds 

6 CONCLUSION AND FUTURE WORK 

The combined forces of IIoT connectivity and AI-based decision-making are increasingly defining the next generation of industrial 
automation, offering enhanced precision, predictive insight, and operational intelligence. Yet, real industrial settings reveal persistent 
challenges related to fluctuating sensor quality, unstable data distributions, and the difficulty of validating decisions produced by 
complex AI models. Strengthening decision reliability requires models that operate effectively under uncertainty, adapt to shifting 
environments, and provide transparent reasoning that engineers can trust. Future directions point toward more advanced edge-AI 
pipelines, where local processing supports fast, autonomous decisions without relying heavily on centralized nodes. Reinforcement 
learning, adaptive rule-based agents, and digital twin-guided analytics are expected to play greater roles in enabling systems that learn 
continuously from operational feedback. Expanding research on trustworthy AI, particularly explain ability and robust decision 
verification, will help reduce the risks associated with automated industrial actions. Furthermore, federated and distributed learning 
approaches offer pathways for training intelligent models across multiple industrial sites while preserving data privacy and respecting 
operational constraints. Collaborative efforts across AI researchers, control engineers, and industry practitioners will be essential for 
transitioning from experimental prototypes to fully dependable, scalable, and ethically aligned IIoT decision-making solutions. 
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