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Abstract: The integration of the Industrial Internet of Things (I1oT) with Al-based decision-making frameworks is reshaping
industrial operations by enabling continuous monitoring, intelligent automation, and context-aware optimization. As IloT
environments produce high-frequency, heterogeneous sensor data, industries increasingly depend on advanced machine learning
models and data-driven reasoning systems to extract actionable insights, anticipate system failures, and support real-time operational
decisions. Current research shows considerable progress in areas such as predictive maintenance, anomaly detection, and adaptive
control, where Al models enhance accuracy, responsiveness, and system reliability. However, several challenges remain, including
severe data imbalance, sensor degradation, dynamic operating conditions, limited edge-level computation, and concerns regarding
transparency and trust in automated decisions. Addressing these limitations requires scalable Al architectures, interpretable models,
and efficient fusion of multivariate sensor signals to support robust decision pipelines. Emerging approaches such as edge-cloud
collaborative intelligence, reinforcement-driven industrial control, and federated analytics demonstrate increasing potential to
elevate situational awareness and autonomous responses in complex lloT networks. By synthesizing current developments,
technological gaps, and practical constraints, the discussion highlights how Al-enabled decision-making continues to evolve as a
central component for building intelligent, efficient, and resilient industrial ecosystems.

Keywords: Atrtificial Intelligence, Industrial 10T, Edge-Fog-Cloud Computing, Federated Learning, Explainable Al, Decision
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1 INTRODUCTION

The physical world is transformed into being digitized and make everything connected. An explosion of smart devices and
technologies has allowed mankind to be in constant communication anywhere and anytime. The Internet of Things (loT) is the
network of physical objects devices, instruments, vehicles, home appliances, buildings and other items embedded with electronics,
circuits, software, sensors and network connectivity that enables these objects to collect and exchange data [1]. The Internet of Things
allows objects to be sensed and controlled remotely across existing network infrastructure, creating opportunities for more direct
integration of the physical world into computer-based systems, and resulting in improved efficiency and accuracy.

The smart use of 10T in industries, which is named Industrial 10T (110T) where I0T is used to develop industrial applications using
various sensors and wireless devices. To cater to the high demands and infrastructural needs of industries, 10T is widely used in
industry to make an industry a smart one, can be named as a smart factory [2]. This fulfils the demand of the 4th industrial revolution
termed as 'Industry 4.0'. 10T and Cyber-Physical Systems (CPS) are key elements of Industry 4.0. Along with lloT, artificial
intelligence, big data, cloud computing, cyber security, system integration, simulation, augmented reality, and additive manufacturing
are pillars of industry 4.0. Industry 4.0 and the Industrial Internet of Things (110T) are interconnected frameworks that make use of
cyber—physical systems and advanced data analytics to enhance industrial operations through autonomous decision-making and real-
time optimization [3][4].

Al facilitates real-time data analysis, intelligent decision-making, and predictive analytics in addition to enhancing the security of the
10T ecosystem against substantial cyber threats. Furthermore, artificial intelligence (Al) and machine learning algorithms play a
crucial role in optimizing resource allocation, ensuring grid stability and reliability, and enhancing energy usage planning. The true
value of the 10T can only be fully realized by integrating Artificial Intelligence (Al) models into embedded platforms, including
microprocessors and microcontrollers, which underpin the embedded devices and systems commonly used in the industrial
environment [5]. Real-time analysis of industrial data is made possible by Al in I10T decision-making, enabling autonomous, adaptive,
and predictive operations. By utilizing machine learning, deep learning, and optimization techniques across distributed industrial
environments, it improves productivity, decreases downtime, and facilitates intelligent resource management.

The purpose of this paper is to provide an overview of the current framework and Al-based decision-making techniques in industrial

0T networks, including their applications, limitations, and potential. It makes an attempt to identify problems before outlining
potential avenues for further study into scalable, dependable, and real-time Al solutions for the sector.
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1.1 Structure of the paper

The structure of this paper is as follows: Section 2 provides an overview of Industrial 10T networks. Section 3 explains Al
fundamentals in I10T. Section 4 presents Al-driven decision-making techniques. Section 5 reviews related literature. Section 6
concludes the study and outlines future research directions for advancing Al-enabled I10T.

2 ESSENTIALS OF INDUSTRIAL 10T NETWORKS

The network architecture of an Industrial 10T (110T) is often multi-layered, namely, perception layer, network layer, middleware, and
application layer, which allow easy data gathering, transmission, computing, and service providing. Interoperability and reliable
connectivity through protocols such as MQTT, CoAP, Bluetooth, ZigBee, 5G, and other such well-known protocols and standards
such as OPC- UA and ISO/IEC 30141 [6]. Even though 10T systems are beneficial, their disadvantages are poor connectivity, issues
related to integrating IT and OT, security vulnerability, data storage requirements, and complexity of analytics. All these are some of
the issues that need to be addressed in order to achieve efficient, secure, and scalable industrial automation in the contemporary smart
manufacturing industry.

2.1 11oT Architecture and Component

A four-layer architecture that may be applied to various 10T systems. It can accommodate the fundamental components of a three-
layer 10T architecture, while also readily expanding this four-layer architecture with additional components to depict a five-layer
I1oT architecture with finer granularity. The Figure 1 shows, of a three-layer 110T architecture, while also readily expanding this four-
layer architecture.
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Figure 1. A Four-layer 10T Architecture
2.1.1  Perception Layer

The perception layer, which includes a variety of sensors for collecting various kinds of human-machine collaborative production
context data, is thought to be the lowest physical layer of the 10T architecture. The perception layer is made up of sensors and
actuators that acquire and interpret context data to carry out tasks (e.g., retrieve location and acceleration). A variety of IloT
applications require the perception layer. To connect the physical and cyber worlds, a variety of end devices can be employed at the
perception layer. Near Field Communications (NFC), RFID, wireless sensors and actuators, RFID, and some smart devices are
examples of typical end devices.

2.1.2  Network Layer

The network layer encapsulates large amounts of protocols (e.g., MQTT, COAP, ZigBee, Ethernet). For the protocols of the I10oT, it
can generally be divided into two categories, namely communication protocol (e.g., Bluetooth and ZigBee) and transmission protocol
(e.g., High-Speed Ethernet (HSE), Modbus TCP/IP, and ProfiNet), performing secure information sharing. Cloud computing and the
Internet are the fundamental components of this layer [7]. Additionally, Internet gateway devices work in this tier by utilizing the
most recent communication technologies to deliver network-connected services.

2.1.3  Middleware Layer
This third-level layer, commonly called the support layer, is presented. It offers 10T systems database and cloud services for the

application layer to use further. The middleware layer employs advanced computational techniques to evaluate, process, and store
data. It can use cutting-edge technologies such as cloud computing and big data analytics to automatically analyze and compute the
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information that has been acquired. As described in the previous section. Middleware has become an effective tool for researchers to
achieve interoperability between systems.

2.1.4  Application Layer

The termination layer of the 10T is another name for the application layer. By preserving data integrity, secrecy, and authentication,
this layer performs as the bridge between users and applications. This layer accesses the middleware layer’s data and offers multiple
services to the users [8]. Additionally, it is integrated with commercial organizations to access smart applications. Using internet-
capable devices such as smartphones, tablets, PCs, wearable technology, and many other smart gadgets, users can access the smart
services at this layer.

2.2 Communication Protocols and Standards

These protocols are essential for 10T which enable devices to communicate with each other and with centralized systems to ensure
smooth operation across various networks and environments [9]. Below are some of the key protocols:

e Message Queuing Telemetry Transport (MQTT): A lightweight protocol ideal for low-bandwidth networks, commonly
used in 10T applications where efficiency is critical.

e Constrained Application Protocol (CoAP): Designed for constrained devices and low-power networks, especially
suitable for loT applications.

e Advanced Message Queuing Protocol (AMQP): Used in more complex environments for reliable messaging between
systems.

o Bluetooth and Zigbee: Protocols used for short-range communication between loT devices, with applications in home
automation and sensor networks [10].

e 5G and Low Power Wide Area Networks (LPWANS): Key protocols for large-scale 110T applications, offering high
speed, low latency, and wide area coverage for industrial use.

Standards ensure interoperability between devices and systems in 10T/I10T environments, which is critical for the seamless integration
of new technologies and large-scale deployments [11]. Common IoT/IloT standards are as follows:

e International Organization for Standardization (ISO)/ International Electrotechnical Commission (IEC) 30141:
The international standard for 10T reference architecture, ensuring the security, privacy, and reliability of 10T systems.

o |IEEE 802.15.4: A key standard for low-rate wireless personal area networks, widely used in IoT communication.

e Open platform communications unified architecture (OPC-UA): An M2M communication standard commonly used
in industrial automation.

e International Standard for the Integration of Enterprise and Control Systems (ISA-95): A standard for the integration
of enterprise and control systems, particularly relevant to 10T applications.

2.3 Challenges Faced by Industrial 10T

The physical world is slowly transforming into digital world from ordinary world because of smart technology and devices
which allows user and devices to be in constant communication with each other. It’s now more efficient because of artificial
intelligence, machine learning, etc [12]. This arises new challenges and opportunities for business leaders. There are few challenges
that are faced by 10T are depicted in Figure 2 & explained as follows:.
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Figure 2: The Challenges in 1loT
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e Connectivity and Visibility: Due to improper or poor connectivity the critical 1loT-implementation challenges arise.
Joining of machine with I1oT is a challenging problem, and it’s necessary to ensure that these machines are working at an
optimal level and it’s important to monitor machines to enhance the production level. Different units are responsible for
the proper working of 110T machines, and there might be a problem of coordination arises as a result of power blackouts,
internet outages and physical or technical errors.

e 1loT Integration: - Integration of the information technology (IT) is another difficulty faced by the IloT execution.
Integration between these two technologies suffers due to essential connectivity and synchronization.

e Security: - As enjoy several comforts from the 10T, must also take care about safety and privacy in smart devices [13].
must give main priority to security while designing the 10T devices. Privacy of personal data and privacy of physical well-
being are including in it. Security is the biggest challenge for 11oT technology team since a small or regular threat could
disintegrate the whole enterprise.

e Data Storage: - Data storage is another major challenge for any company or enterprise. The data which was stored in past
are used for the all forecasted activities. Today none of the enterprise uses an old conventional method to tackle data which
mostly would be analyzing high-frequency data, observe it, and punctually thrown it away [14]. It is compulsory for any
company to adopt proper plan for a secure storage of data before run 10T in full mode.

e Analytics Challenges: It’s necessary for Data Analytics partners to include data processing, cleansing, and representation
while executing 10T architecture. Enough space for functionality factor is left surely and this factor add real-time or
predictive analytics to an 10T solution simply.

3 ROLE OF ARTIFICIAL INTELLIGENCE IN I1OT

In 10T, Artificial Intelligence (Al) uses techniques such as machine learning, deep learning, or reinforcement learning to enable
intelligent decision-making and optimize decision-making through data [15]. Al implementation in 10T utilizes layers for deployment
via edge, fog, and cloud, balancing real-time latency, localized intelligence, and sizeable data processing. Edge nodes provide the
ability to acquire and pre-process data, fog nodes allow for the analysis of data at the local regional level, while cloud provides a
unified data set for all edge devices for optimization on a more global scale. The Al models deployed with 10T must be able to
provide real-time results, must be lightweight, and must aid in human comprehension, which can be accomplished through a
combination of course-grained pruning, quantization, and knowledge distillation.

3.1 Al Paradigms Relevant to I1oT

Artificial Intelligence (Al) plays a critical role in Industrial Internet of Things (1loT) by enabling intelligent decision-making,
predictive insights, and autonomous operations [16]. Various Al paradigms, including machine learning, deep learning, and
reinforcement learning, are leveraged to process massive amounts of industrial data from sensors, machines, and networks. These
paradigms help optimize production, improve efficiency, and reduce downtime in complex industrial environments.

e Machine Learning (ML): Machine learning allows Il1oT systems to automatically learn from data rather than relying on
explicit programming. By analyzing historical and real-time sensor, device, and operational data [17], ML models can
identify patterns, correlations, and anomalies that help in predictive maintenance, process optimization, and intelligent
decision-making.

e Supervised and Unsupervised: ML approaches can be categorized into three main types. Supervised learning uses labeled
datasets to train models for tasks such as quality inspection or fault detection [18]. Unsupervised learning identifies hidden
patterns in unlabeled data, useful for clustering devices or detecting unusual behaviors.

o Deep Learning (DL): Deep learning extends traditional ML by employing multi-layered neural networks capable of
handling large-scale, high-dimensional data. DL can process complex information from IloT environments, including
images from inspection cameras, vibration signals from machinery, and sensor fusion data. Its capability to automatically
extract hierarchical features makes it ideal for applications like anomaly detection, predictive maintenance, and process
automation.

e Reinforcement Learning (RL): Reinforcement learning is particularly suited for dynamic and uncertain lloT
environments. By continuously interacting with machines, robots, or production systems, RL agents learn optimal strategies
over time. The reward-punishment mechanism enables systems to adapt to changing conditions, optimize energy
consumption, reduce downtime, and improve overall operational efficiency.

3.2 Edge, Fog, and Cloud Al Deployment Models

The architecture for Cloud-Edge Al integration in [10T follows a layered approach, combining the strengths of both cloud and edge
computing. This architecture is designed to optimize real-time data processing, enhance system efficiency, and improve overall
industrial automation [19]. It consists of three key players: the edge layer, the fog layer, and the cloud layer, each with distinct roles
and responsibilities, as illustrated in Figure 3.
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Figure 3: Cloud-Edge Al Architecture for lloT
321  Edge Layer

The edge layer is the closest to the physical world, consisting of 10T devices such as sensors, actuators, and embedded systems that
are directly attached to industrial equipment. This layer plays a crucial role in ensuring real-time responsiveness and reducing data
transmission overhead by processing data locally. At the edge, data acquisition is performed by sensors that collect raw information,
such as temperature, vibration, pressure, and other operational parameters [20]. To improve data quality and minimize noise, local
data pre-processing is conducted, including filtering, cleaning, and basic aggregation of sensor readings. This reduces the volume of
data that needs to be transmitted to higher layers, saving bandwidth and improving efficiency.

3.2.2  Fog Layer

The fog layer serves as an intermediary between the edge and the cloud, providing additional computational and storage resources
closer to the data source. This layer is typically implemented on industrial gateways, local servers, or edge clusters, offering more
processing power than edge devices while maintaining lower latency compared to cloud services [21]. One of the primary
responsibilities of the fog layer is data aggregation and analysis—collecting information from multiple edge nodes, identifying
patterns, and performing regional-level analytics. This helps detect localized trends that may not be apparent at an individual device
level.

3.2.3  Cloud Layer

The cloud layer acts as the central hub for large-scale computing, storage, and Al-driven insights. It provides a global perspective of
the entire 110T ecosystem by aggregating data from multiple industrial sites and performing comprehensive analytics [22]. One of its
key functions is global data aggregation and analysis, where data collected from thousands of edge and fog nodes is combined to
generate insights at an organizational level. This enables companies to monitor overall production efficiency, detect long-term trends,
and make data-driven decisions for optimizing operations.

3.3 Al Model Requirements for 10T

In the case of Industrial 10T, Al models are required to be adjusted to the limits of industrial processes and be highly reliable. Real-
time is necessary because most applications of 1loT demand real-time responses daily, including anomaly detection, predictive
maintenance and process control, to avoid production downtimes that could lead to quality or safety issues [23]. The low weight is
also essential, as most of the 10T devices, especially edge-based ones, have a weak processing capacity, memory, and energy
provisions.

The model pruning, quantization, and knowledge distillation are the techniques that are commonly used to decrease the number of
parameters and ensure the level of accuracy. Lastly, interpretability, i.e., being able to make sense of Al decisions, is essential in the
industrial context where operators and engineers need to comprehend the rationale of Al decisions in order to be grounded, support
trouble shooting, and optimal legal compliance [24]. A trade-off between these three needs allows the implementation of Al systems
that can be technically effective and operationally reliable in practice when it comes to I10T.

4 TECHNIQUES FOR DECISION MAKING IN 11OT

The ultimate objective of integrating Al-enabled smart sensors in 10T is to facilitate accurate and timely data-driven decision-making.
This requires the framework to provide meaningful insights into the operational status of industrial processes, enabling predictive
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maintenance, process optimization, and anomaly detection. [25]. To ensure reliable data-driven decision-making, the framework
should integrate advanced Al techniques, including machine learning (ML) and deep learning (DL), for processing and analyzing
sensor data [26]. ML models can be used for predictive analytics, such as forecasting equipment failures and optimizing resource
utilization.

4.1 Deep Learning Integration for Intelligent Decision-Making in 10T

Deep Learning is considered to be one of the most powerful techniques in the domain of artificial intelligence (Al). The integration
of DL methods in smart industries can upgrade the smart manufacturing process into a highly optimized environment by information
processing through its multi-layer architecture. DL approaches are very helpful due to their inherited learning capabilities, underlying
patterns identification, and smart decision-making. The biggest advantage of DL over conventional ML techniques is automatic
feature learning. With this option, there is no need to implement a separate algorithm for feature learning [27]. The deployment of
DL techniques can be very effective to perform the types of aforementioned analysis in smart industries.

4.2 Federated Learning for privacy-preserving decision-making

Federated Learning (FL) is a distributed machine learning model that trains local models on the user side and aggregates them with a
central manager. FL allows devices to collaboratively train shared models without having to exchange their local private data. FL
model training is divided into three phases. First, data are locally collected and trained. Second, the local model is uploaded and
aggregated. Finally, the aggregation forms a global model, which is then distributed to local devices [28]. By allowing Al models to
be trained cooperatively across dispersed devices without exchanging raw data, federated learning facilitates privacy-preserving 10T
decision-making. This method lowers the risks associated with data exposure while utilizing a variety of real-time industrial datasets
to enhance model accuracy and flexibility.

4.3 Explainable Al (XAl) for Transparent Decisions in Industry

Critical processes like production optimization, equipment maintenance, and safety control are frequently impacted by decisions made
in industrial 10T environments [29]. Even though Al models, especially deep learning, can produce highly accurate results, it can be
difficult to comprehend how decisions are made because of their "black-box" nature. This is addressed by Explainable Al (XAl),
which gives managers, engineers, and operators interpretable insights into Al model outputs so they can validate and trust automated
decisions. In the 10T, where stakeholders must validate decision logic prior to execution, XAl is especially crucial for regulatory
compliance, fault diagnosis, and risk mitigation. By revealing the logic behind predictions, methods like feature attribution, model-
agnostic explainers (like LIME and SHAP), and visualization tools contribute to the transparency of Al systems.

5 LITERATURE REVIEW

This section presents a literature review on Al-driven decision-making in Industrial 10T networks, covering 10T sensor integration
with cloud analytics, distributed TinyML frameworks, agent-based disaster prediction systems, hybrid decision-making models, NF-
based communication methods, blockchain applications, and secure 10T data transmission, highlighting advancements, challenges,
and future research directions.

Khan et al. (2025) Industrial Internet of Things (lloT) networks, essential to modern manufacturing, logistics, and critical
infrastructure, face unprecedented cybersecurity challenges. As I1oT networks expand, integrating countless interconnected devices,
they are increasingly exposed to cyber threats that exploit system vulnerabilities, jeopardizing data integrity, operational continuity,
and safety. Traditional security measures, while effective in standard IT environments, often lack the adaptability and real-time
responsiveness needed for 1loT's unique requirements. In response, Artificial Intelligence (Al) has emerged as a transformative
solution, offering enhanced detection, prediction, and response capabilities tailored to the complex 1loT landscape. This chapter
explores the critical role of Al-driven approaches in advancing cybersecurity for 110T networks [30].

Jovith et al. (2024) presents the use cases and benefits of 10T sensor networks for gathering actionable insights and operational data
from industrial machinery. These networks might benefit from cloud computing to better manage and analyze the massive amounts
of data the produce. It highlights the evolution of conventional industrial landscapes into linked ecosystems that may provide
insightful decision-making data. The data for users to use sensor networks to monitor equipment and improve productivity. Reducing
equipment downtime by 30% and increasing operational efficiency by 20% are both made potential by combining Industrial loT
sensor networks with cloud analytics. With an 80% success rate, maintenance technigues save a ton of money and make things more
efficient [31].

Yuan and Eddie Law (2024) have designed a set of function calls for enabling the distributed deployments of neural network models
across multiple resource-constraint sensing devices in DTSN. It results in facilitating autonomous data analysis and decision-making
while reducing reliance on Cloud services. With the popular Bluetooth technology, Bluetooth mesh networks are utilized for inter-
device communications and support dynamic memory management without compromising model precision. Their model offers on-
device model training, fast deployment, and provides inferences at an 10T gateway node. The experiment results indicate that the
DTSN achieves high accuracy in both regression and classification tasks. It demonstrates the feasibility of training and inference on
embedded devices. [32].
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Chekati, Riahi and Moussa, (2024) introduces the SADM-Smart Object framework, a cutting-edge, agent-based conceptual and
methodological 10T framework designed for self-adaptation and decision-making, specifically applied to the context of natural flood
disasters. The primary objective of this framework is to monitor key climate indicators such as rainfall, humidity, temperature,
pressure, and water levels and discern their temporal correlations to enhance flood prediction accuracy. It offers a strong layered
architecture complemented by efficient tools for constructing loT systems, integrating machine learning classifiers for data
classification, and agent-based approaches for decision-making [33].

Cherif and Frikha (2023) aims to investigate the significance of 10T systems in various domains, focusing specifically on the industrial
application, emphasizing the pivotal role of reliable and efficient device connectivity within such systems. To address the challenges
posed by uncertainty and ambiguity in real-life scenarios, proposed the integration of rough set theory with multi-criteria decision-
making approaches to evaluate and classify 10T devices in the industrial domain. The utilization of the proposed hybrid multi-criteria
group decision-making approach allows to effectively model and handle the uncertainty arising from expert assessments [34].

Gunasekaran et al. (2023) intends to create an NF-based communication system for 11oT platforms to leverage those benefits. The
proposed model includes smart decision-making procedures to deal with communication issues. Compared with the many methods
already in use, the suggested mechanism’s functional viability in the automated system is found to be optimal. Outcomes from
simulations reveal that the suggested method has improved the accuracy and communication reliability of the I1oT platforms in
comparison with the previous methods. Aside from these, the suggested model keeps the throughput of the local automation unit at
96.03% and the throughput of the production hall at 95.58% on average while maintaining the lowest average PLR of about 26.48%

[35] .

Table 1 presents a summary of the literature review, highlighting each study’s focus, approach, key findings, challenges, and proposed
future directions.

TABLE I. SUMMARY OF RESEARCH GAPS IN Al-BASED DECISION-MAKING FOR INDUSTRIAL 10T (110T) SYSTEMS

Reference | Study On Approach Key Findings Challenges Future Direction
Khan et al. | Cybersecurit | Al-driven Demonstrates that Al | Difficulty integrating | Develop lightweight Al
(2025) y challenges | security enhances detection, | Al models into | algorithms for edge-based
in Industrial | approaches for | prediction, and | resource-constrained | threat detection; explore
loT  (lloT) | lloT dynamic response for | 1loT devices; high | federated learning for
networks environments | lloT  cyber threats; | data  heterogeneity; | secure distributed
highlights limitations of | real-time adaptation | analytics; enhance real-
traditional security in | issues time anomaly detection
real-time I10T settings systems
Jovithetal. | Use cases | IloT  sensor | Significant High dependency on | Move toward hybrid edge-
(2024) and benefits | networks improvements in | cloud platforms; | cloud analytics; explore
of IloT | combined with | productivity and | latency and | privacy-preserving  data
sensor cloud-based reduced downtime | bandwidth processing; develop
networks data analysis (30%); operational | limitations; autonomous maintenance
integrated efficiency increased by | security/privacy models
with  cloud 20%; maintenance | concerns in cloud-
analytics techniques achieve 80% | based loT
success rate
Yuan & | Distributed | On-device Achieves high accuracy | Limited Develop ultra-efficient
Eddie Law | neural model training | in computational neural architectures;
(2024) network using regression/classificatio | resources on sensing | optimize distributed
deployment | Bluetooth n tasks with reduced | nodes; training strategies;
in mesh networks | reliance  on  cloud | communication improve mesh
Distributed | for distributed | services; supports | constraints in mesh | communication protocols
Tactical inference dynamic memory | networks; energy | for scalability
Sensor management consumption issues
Networks
(DTSN)
Chekati, Agent-based | SADM- Effective in monitoring | Lack of real-world | Advance real-world pilot
Riahi & | loT SmartObject: climate indicators and | deployment studies; incorporate deep
Moussa framework layered improving flood | validation; data noise | learning for improved
(2024) for natural | architecture prediction  accuracy; | and  environmental | prediction; expand
flood with ML- | strong conceptual | unpredictability; framework to multi-hazard
disaster based framework for loT- | integration disaster management
monitoring classification based decision systems | complexity with
and agent- diverse sensors
driven
decision-
making
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Cherif & | Evaluating Hybrid Rough | Effectively models | Limited scalability for | Develop automated
Frikha and Set Theory + | uncertainty in device | large-scale 10T | uncertainty-aware
(2023) classifying Multi-Criteria | classification; improves | networks; evaluation tools; enhance
industrial Decision- assessment accuracy in | computational scalability with big-data
IoT devices | Making industrial 10T systems | complexity of hybrid | methods; integrate Al-
under (MCDM) models; reliance on | driven decision support
uncertainty expert input
Gunasekar | NF-based Smart Achieves ~96% | PLR still relatively | Further optimize reliability
an et al., | communicat | decision- throughput and | high; limited | mechanisms; integrate Al-
(2023) ion  model | making improves adaptability under | based network
for IloT | communicatio | communication extreme network | optimization; validate
platforms n architecture | reliability; reduces | stress; lacks | model via real industrial
improving packet loss ratio to | hardware-level testbeds
reliability and | ~26.48% validation
throughput

6 CONCLUSION AND FUTURE WORK

The combined forces of 110T connectivity and Al-based decision-making are increasingly defining the next generation of industrial
automation, offering enhanced precision, predictive insight, and operational intelligence. Yet, real industrial settings reveal persistent
challenges related to fluctuating sensor quality, unstable data distributions, and the difficulty of validating decisions produced by
complex Al models. Strengthening decision reliability requires models that operate effectively under uncertainty, adapt to shifting
environments, and provide transparent reasoning that engineers can trust. Future directions point toward more advanced edge-Al
pipelines, where local processing supports fast, autonomous decisions without relying heavily on centralized nodes. Reinforcement
learning, adaptive rule-based agents, and digital twin-guided analytics are expected to play greater roles in enabling systems that learn
continuously from operational feedback. Expanding research on trustworthy Al, particularly explain ability and robust decision
verification, will help reduce the risks associated with automated industrial actions. Furthermore, federated and distributed learning
approaches offer pathways for training intelligent models across multiple industrial sites while preserving data privacy and respecting
operational constraints. Collaborative efforts across Al researchers, control engineers, and industry practitioners will be essential for
transitioning from experimental prototypes to fully dependable, scalable, and ethically aligned I10T decision-making solutions.
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