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Abstract: The development of advanced cyberattacks, including targeted ransomware, requires more stringent security protocols,
and this gave way to the introduction of zero-trust (ZT) deployment as a solution to these issues. To overcome this difficulty, this
research proposes an effective ransomware detection model that leverages ransomware data via a deep learning-based Gated
Recurrent Unit (GRU). The achieved GRU model performed better with an accuracy (ACC) of 98.53%. Compared to traditional
models such as CNNs, SVMs, and Logistic regression, the dominance of GRUs in reducing false predictions and in capturing
time-related patterns was evident in the comparative analysis. Stable convergence was confirmed by the training and validation
curves, and the confusion matrix showed only a few misclassifications. Optimized feature selection also increases detection ability
by focusing on the most pertinent features. These findings confirm the GRU model's strength, generalization ability, and
applicability in industrial control systems to reduce ransomware attacks. On the whole, the suggested solution provides a flexible,
stable scheme for ransomware detection that can be deployed in industrial control systems and critical infrastructure settings where
timely, accurate threat detection is the priority.

Keywords: Cybersecurity, Ransomware detection, Threat Intelligence, Network Traffic, Machine Learning, Malware,
Ransomware Dataset.

1 INTRODUCTION

Ransomware attacks have grown exponentially, making them one of the biggest cybersecurity threats that businesses currently face.
Ransomware has gained popularity recently as a tactic used by cybercriminals to extort money from gullible victims by encrypting
their data and requesting a key to unlock it [1]. Ransomware attacks have affected every industry, including the government,
healthcare, financial, and educational sectors [2]. Since the stakes are very high, it is essential to learn what ransomware attack is,
how it propagates, and the possible consequences of becoming a victim of one [3][4][5]. There is an immediate need to conduct
more thorough study on the topic and discover effective ways to prevent and minimize ransomware assaults, since the risk of such
attacks likely continue in the future [6] [7][8][9].

Machine learning (ML) has become one of the promising solutions to improve cybersecurity systems, since it allows ransomware
attacks to be detected and blocked early [10][11]. In contrast to traditional solutions, ML-based solutions examine large volumes of
network traffic data, system logs, and file behaviors to discover concealed patterns and anomalies likely to be associated with
ransomware activity [12][13]. Businesses use the supervised and unsupervised learning model to enhance the accuracy of threat
detection, reduce reaction time, and exchange relevant knowledge on the best ways to combat ransomware in order to make
cybersecurity systems more resilient [14][15]. a powerful machine learning system for ransomware detection, explore the pros and
cons of dynamic analytic techniques, and provide actionable advice on how to strengthen cybersecurity by reducing the impact of
ransomware [16][17].

1.1 Motivation and Contribution

The growing susceptibility of individuals and companies to ransomware attacks, which can cause substantial financial and
operational harm, has motivated this study. The traditional security mechanisms are mostly deficient to be able to identify and
prevent such attacks because they are dynamic and advanced. Thus, the intelligent, automated detection systems that able to identify
ransomware correctly and with a minimum of false alarms are much needed. This study provides a reliable solution to safeguard
digital assets against ransomware attacks by optimizing feature selection and leveraging ML models such as GRUs. It can also
enhance accurate detection while minimizing computational complexity. The paper has several significant contributions as discussed
below:

e Carried out a thorough cleaning, outlier elimination, minmax normalization, and SMOTE-Tomek balancing because the
quality of the input provided to the model during the training process should be of high quality and free of bias.
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e Applied correlation heatmaps and boxplots to identify patterns of relationships and behavior between features between
types of ransomwares, which would help make it easier to interpret and understand feature relevance.

e Using SMOTE-Tomek, achieved class parity, and reduced bias and enhanced classifier generalization between ransomware
and goodware classes.

e Created a GRU model of ransomware detection that leverages less complex gating and time-based relationships to learn
effectively.

e Relied on the performance measures of the model, as indicated by the confusion matrix (F1-score, recall, accuracy,
precision) to make sure that it had fully validated its detecting capacity.

The current work is fueled by the increasing interest in the problem of ransomware attack on industrial control systems. Conventional
malware detection methods do not necessarily detect such attacks, as they are complex and dynamic. The existing models struggle
with sequence dependencies and unbalanced data, which prevent their practical application. This is a novel work inspired by a
combination of a GRU structure with an optimised feature selection and SMOTE-Tomek balancing that allows the detection of
ransomware with high accuracy, and education based on the temporal patterns. The GRU model, unlike conventional classifiers,
learns subtle behavioral patterns in PE files, resulting in better performance across all evaluation metrics. It provides a high-accuracy,
interpretable, and scalable solution tailored to dynamic cybersecurity environments.

1.2 Organization of the Paper

The organization of the work is as follows: In Section 2, the literature of ransomware detection is reviewed; section 3 describes the
dataset used, preprocessing steps, and model implementation; Section 4 provides a description of the experimental results, including
a comparison of them; and Finally, Section 5 presents an overview of the key findings and recommends future research.

2 LITERATURE REVIEW
This study was guided and strengthened by a comprehensive assessment and analysis of key ransomware detection research.

A and Bagyalakshmi (2025) establish a solid foundation for building robust, real-time defense systems against ransomware, suitable
for deployment in increasingly complex and dynamic environments. RF performed best with 97.5% accuracy and an F1 Score of
97.56. XGBoost and LightGBM also achieved strong results, with F1 Scores of 96.62 and 96.12, respectively. LR scored lowest
(F1 Score: 79.4%), showing weaker performance. Ensemble models are effective for real-time ransomware detection systems [18].

Zakaria et al., (2025) propose the analysis and evaluation of various machine learning classifiers over RENTAKA dataset to detect
crypto-ransomware in its pre-encryption phase. The dataset of five full pre-encryption activities was used to evaluate five classifiers:
RF, SVM, k-NN, LR, and DT. RF Classifier was more successful with a score of 96.29% that comes after SVM and Logistic
Regression with 94.98% [19].

Chisty and Rahman Rahman, (2024) proposes a stacked ensemble-based ML classifier to detect ransomware. The ensemble model
employs an ANN as its meta-classifier, in addition to NB, RF, and KNN as its base classifiers. The proposed model achieved
98.57% accuracy in the experiments. The model is evaluated in contrast to existing ML methods, which demonstrate its superior
performance [20].

Rathina, Aadil and D (2024) A new hybrid ransomware detection mechanism is suggested, which examines image information, text
and application code to isolate plain or encrypted menace text and have a combination of machine learning models as classifiers,
dynamic and static analysis in ransomware detection method. Interestingly, experiments reveal good results with accuracy rate as
high as 91% and low rate of false negatives [21].

Khurana (2023) provides a comprehensive approach to detecting and mitigating ransomware threats using ML models. Three ML
algorithms—SOM, RF Classifier, and LSTM networks—are used to analyze behavior. Performance assessment demonstrates that
the proposed method is superior to traditional methods. Its effectiveness in the accurate identification of ransomware threats and
also reduce false alarms is testified by High Detection Accuracy (93.0%) and Precision (97.0%) [22].

Molina et al. (2022) propose a unique initiative to capitalize on such paranoia actions to characterize identifiable ransomware
patterns. The tested procedure is effective; the RF and Out-of-Womb (OoW) procedures achieved the highest classification level,
94.92. These findings indicate that the ransomware evasion mechanisms deployed nowadays can be employed as the characteristics
to be used to perform attribution, and they also shed some light on the way ransomware families are organized [23].

Table 1 provides an overview of advancements in ransomware detection using ensemble and ML methods. But as it is, existing
methods often rely on fixed datasets and do not account for dynamic ransomware patterns. Hybrid and multi-modal methods are
promising, though they are difficult to apply in real time, have low computational cost, and are difficult to generalize across variant
components. Adaptive, light-weight and scalable frameworks, which combine various features, learn on-the-fly about new threats
and are highly accurate with low FP are wanted.
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Table 1: Recent Studies on Ransomware Detection in Industrial Control Networks using Machine learning

Author Proposed Work Results Key Findings Limitations & Future Work
A and | Development of real-time | RF: Accuracy | Ensemble models are | Relies on static dataset;
Bagyalakshmi | ransomware detection using | 97.5%, F1 97.56; | effective for real-time | computationally  intensive;
(2025) ensemble models (Random | XGBoost F1 96.62; | ransomware detection may miss subtle contextual
Forest, XGBoost, | LightGBM F1 cues in dynamic
LightGBM, Logistic | 96.12; LR F1 79.4% environments
Regression)

Zakaria et al. | ML classifiers over | Random Forest | Efficient detection with | Could extend to more diverse
(2025) RENTAKA dataset for pre- | accuracy: 96.29%, | low false positive rate, | datasets and real-time
encryption crypto- | SVM & Logistic | robust proactive defense | deployment

ransomware detection Regression: 94.98%
Chisty & | Stacked ensemble ML | Accuracy: 98.57% | Provides interpretable | Could explore optimization
Rahman, approach with NB, REF, predictions and superior | for computational efficiency
(2024) KNN, XAI with LIME and performance compared to | in large-scale datasets

SHAP individual ML models
Rathina, Hybrid detection combining | Accuracy 91%; low | Multi-modal analysis | Moderate accuracy; potential
Aadil & D | static/dynamic analysis, | false negatives enhances  ransomware | challenges in scaling and real-
(2024) image, text, and code detection time processing

analysis
Khurana ML-based ransomware | Accuracy 93%, | LSTM  effective  for | Complexity in  training
(2023) detection using SOM, RF, | Precision 97% sequential behavior | multiple models; continuous

and LSTM; automated analysis; automated | learning may require frequent

threat response responses improve | updates

defense

Molina et al.
(2022)

NLP-based modeling of
ransomware “paranoia
activities” for classification

RF + Occurrence of
Words:  Accuracy
94.92%

Paranoia activities and
NLP features effective
for ransomware family
attribution

Focused on specific
ransomware behaviors; may
not generalize to emerging
families

3 RESEARCH METHODOLOGY

Ransomware detection through ML is systematically approached in this study's methodology. A preprocessing step is performed on
the Ransomware Dataset to handle missing values, remove outliers, select features using the SelectKBest method, and normalize
numerical features using min-max scaling. To address class imbalance, a training set comprising 70% of the dataset and a test set
comprising 30% were constructed. The recommended GRU model then needed to be trained. Next, a confusion matrix was used
to calculate accuracy, precision, recall, and F1-score. Figure 1 illustrates the proposed flowchart for Ransomware Detection in

Industrial Control

Networks.

Collect Ransomware

v
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Figure 1: Proposed flowchart for Ransomware Detection using Machine learning
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Each step of the suggested methodology is described in detail in the section that follows:
3.1 Data Gathering and Analysis

This study utilizes the Ransomware dataset. This dataset consists of 62,485 PE (Portable Executable) files, of which 35,367 are
labelled as ransomware and 27,118 as benign. The target variable is binary, where 0 indicates ransomware and 1 indicates goodware.
The distribution of attacks, feature correlations, and other data visualizations was examined using bar plots and heatmaps:
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Figure 2: Plot Correlation Heatmap of features

Figure 2: heatmap showing the Pearson correlation between seven numerical features related to ransomware activity. The correlation
strength is shown on the right-hand side of the graph, with yellow indicating a very strong positive connection and dark green a very
strong negative correlation. Comparing each characteristic to itself yields a perfect correlation of 1.00, as seen on the diagonal.
Several variables in the figure are highly correlated, suggesting that as one increases, the others typically follow suit. For example,
there is a strong positive correlation between File Size (bytes), File Entropy, and Network Traffic (KB). In contrast, CPU_Usage
(%) shows a very low correlation with most of the other features, with values close to zero. The numbers inside each square represent
the specific correlation coefficient between the two intersecting features.

Box Plot of Time to Encrypt for Each Ransomware Type
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Figure 3: Boxplot for each ransomware type
Figure 3 compares the Time to Encrypt (in seconds) for four different ransomware types. The plot illustrates that WannaCry has the

minimum median encryption time of approximately 7.5 seconds with comparatively small IQR. Locky and CryptoLocker times are
increasingly higher with CryptoLocker median of approximately 9.5 seconds and a bigger range. Ryuk has the median encryption
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time of around 10.5 seconds, which also has a great range, meaning that the process of encryption can be more or less random. The
outliers, whose representations are single points, exist in all types of ransomware, except CryptoLocker, implying that there are data
points that do not necessarily represent the normal distribution that range of the groups. The plot clearly shows that the encryption
times of different ransomware variants differ significantly.

3.2 Data Pre-processing

Ransomware Dataset was gathered, cleaned, and concatenated during the data preparation process. Significant attributes were then
taken out. Normalization and data balance was done after first pre-processing the data to remove outliers and missing values. A
brief overview of the preprocessing procedures is provided below:

e Handle missing value: Handling missing values refers to the methods for dealing with absent data points in a dataset,
which occur when data for a particular variable or observation is not stored.

e Remove outliers: Eliminating or modifying data points that differ substantially from the total dataset is known as removing
outliers. This is commonly done to enhance the precision of statistical studies and machine learning models by removing
inaccurate or non-representative data.

3.3 Feature selection

For feature selection, the SelectKBest method with an ANOVA F-test was applied to identify the most relevant features influencing
the target. A maximum of 50 top features (or fewer if available) were retained. Alignment was achieved by fitting the approach to
the training set and consistently applying it to the test set. Finally, the most informative features were extracted, and the total number
of selected features was displayed.

3.4 Min-Max Normalization

The normalization of records was performed using the min—-max method to restrict values to the range 0-1. The mathematical
formula that was used to conduct the normalization process was (1):

Xl — X— Xmin (1)

Xmax—Xmin
where X is the feature's starting value, X,,;, is its minimum value, X,,,, is its highest value, and X' is its normalized value.
3.5 Data balancing with SMOTE-Tomek

Smotomek is a class imbalance technique that first oversamples the imbalance dataset using the Smote technique and then identifies
and removes Tomek links from the oversampled dataset. Using the SMOTE followed by the Tomek links approach, the dataset can
be perfectly balanced, as depicted in Figure 4, and classifier performance can be improved.

Before Balancing After SMOTE-Tomek Balancing
25000 25000 -
20000 20000 -
- o
5 15000 5 15000
8 8
10000 1 10000
5000 5000 -
0- . 0 ’;
Ransomware Goodware Ransomware Goodware
Class Class

Figure 4: Data Distribution before and After Balancing (SMOTE-Tomek)

Figure 4 illustrates the impact of SMOTE-Tomek balancing on the class distribution within the dataset. Prior to balancing, the
"Ransomware" class significantly outweighed the Goodware class, with approximately 27,000 and 22,000 samples respectively,
indicating a class imbalance that could bias model performance. After applying the SMOTE-Tomek technique, both classes were
equalized to around 27,000 samples each, demonstrating successful mitigation of the imbalance. This balanced distribution enhances
the reliability of downstream ML models by ensuring fair representation of both classes during training.
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3.6 Data Splitting

A stratified split was used to split the dataset into training and test sets at a 70:30 ratio. This was done to preserve the original
dataset's class distribution in both subsets.

3.7 Proposed Gated Recurrent Unit (GRU) Model

The Gated Recurrent Unit (GRU) model is a deep learning-based approach that has been suggested for ransomware detection in this
work [24][25]. A GRU, which is an LSTM in its most basic form. The GRU memory module has only two gating components—
the reset gate and the module itself—after the input and forget gates of the LSTM are combined into a single update gate [26]. The
update gate, represented as Z;, regulates the amount of historical data states that are contributed to the present state and can define
the formula for capturing information from the update gate as (2)

Zy = oWy * [he—1, X)) )

The reset gate, which is shown as R;is a key part of determining how much past information is stored. A lower reset gate value
preserves more earlier data, making it easier to see short-term trends in the water quality parametric data. The data can be retrieved
by the reset gate using the following formula: Equation three

Ry = oW, = [he—q, X¢]) 3)

The unit's output state at time t is denoted by h,, and its expected value is indicated by h,. This number is used to transport data
between units, and the estimated output value at that point was ((4)).

he = tanh(Wp, * [r, * hy_q, X,]) 4)
The expected results from the data on water quality parameters might be stated as (5):
he = —Z)*he_y+Z xh (5)

X, represents the current input data value at instant ¢, and h,_; represents the output value of the water quality parameter data in
the memory cell at moment t — 1. The cell's weight matrices are W,, W,. and W . The activation function is denoted by o, the
bisecting curve of the activation function is denoted by tanh, "[]" represents the connection of two matrices, and "*" indicates the
matrix product.

3.8 Evaluation metrics

The efficacy of the proposed design was assessed using multiple evaluative metrics. A confusion matrix was generated to summarize
the categorization results and display the number of correct and incorrect answers for each class. The TP, FP, TN, and FN values
were determined from this matrix. Following that, these values were used to construct the following performance metrics: accuracy,
precision, recall, and F1-score:

TP+TN

Accuracy = ———— (6)
TP+Fp+TN+FN

.. TP

Precision = (7)

TP+FP
TP
Recall = —— (®)
TP+FN

F1 — score = 2 X Prec%s%oanecall (9)
Precision+Recall

Precision (Eq. 7) and Recall (Eq. 8) assess the thoroughness and quality of positive predictions, and Accuracy (Eq. 6) indicates
overall correctness. Maximizing both recall and precision, the F1-Score (Eq. 9).

4 RESULTS AND DISCUSSION
A laptop with an Intel Core 19-14900HX processor, 32 GB of RAM, and an NVIDIA RTX 4070 with 8 GB of VRAM, compatible
with Python (Jupyter Notebook), was used for system design and analysis. Table 2 demonstrates that the proposed GRU model

achieves extremely high classification accuracy on the malware Dataset. With an accuracy of 98.53%, the model correctly classified
the majority of the samples. Precision and recall were also 98.53%, indicating the model's high capacity to correctly detect
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ransomware cases with minimal FP and FN. The F1-score of 98.41% is further evidence of the model's balanced performance, with
accuracy and recall indicating the reliability and strength of its ability to detect ransomware in industrial control networks.

Table 2: Classification results of the proposed Model for Ransomware Detection

Performance Matrix Gated Recurrent Unit (GRU)
Accuracy 98.53
Precision 98.53
Recall 98.53
Fl-score 98.41
Training vs Validation Accuracy
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0.96 -
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>
o
o
3 0,921
E
0.90 1
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0 5 10 15 20 25
Epochs

Figure 5: Training and Validation Accuracy Curve for GRU model

The GRU model's training and validation accuracy curves show a rising trend with 25 epochs, as shown in Figure 5. Both metrics
are increasing. Training accuracy is slightly varied whereas validation accuracy is gradually rising, and it has a temporary decrease
at around epoch 10. Converging to 0.98 in the last epochs, the two curves show that generalization is strong and performance is
stable both on seen and unseen data.

Figure 6 depicts the training and validation loss curves for the GRU model across multiple epochs. Both curves show a general
downward trend, indicating effective learning and convergence during training. However, a noticeable spike in validation loss
around epoch 13 suggests a brief instability or potential overfitting, which is quickly corrected in subsequent epochs. The overall
alignment between the training and validation losses indicates good generalization performance of the model.

Training vs Validation Loss

0.35 A
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0.30 1
0.25 A
&
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Figure 6: Training and Validation Loss Curve for GRU model
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Testing Confusion Matrix
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Figure 7: Confusion Matrix for the GRU Model

Testing the GRU model on both Goodware and Ransomware samples yielded the confusion matrix shown in Figure 7, which
demonstrates the model's classification performance. The matrix has high predictive power, with 132 Goodware and 116
Ransomware cases properly categorized, yielding 52.381 and 46.032, respectively. There is minor misclassification, and only 4
Goodware samples were mistakenly classified as Ransomware (1.587), and 0 Goodware mistakenly as Ransomware. The large
diagonal and low off-diagonal errors indicate that the model is strong and reliable at distinguishing between the two classes.

4.1 Comparative analysis

The performance of the proposed GRU model was assessed by a comparison of their accuracy when compared with the existing
models. Table 3 presents the results. The GRU model performed best overall, suggesting it is effective at identifying ransomware
attacks. The CNN model was average, with 89.6% accuracy and a balanced precision/recall ratio, compared with the SVM's 92.5%
overall accuracy. The LR model's low recall of 89% reveals a bias towards missing a small number of ransomware occurrences,
despite its high precision of 96%. However, the GRU model has demonstrated the most effective and trustworthy capability for
ransomware detection in this particular scenario.

Table 3: Comparison of Different ml and dl Models for Ransomware Detection using Ransomware Dataset

Model Accuracy | Precision | Recall | F1-score
CNNJ27] | 89.6 89.8 89.1 89.5
SVM[28] | 92.5 92.5 92.5 92.5
LR[29] 96 96 89 89

GRU 98.53 98.53 98.53 | 98.41

The suggested GRU model shows significant benefits for ransomware detection, with impressive accuracy and high precision and
recall. This underscores why it is an effective tool for accurately detecting ransomware, as well as reducing FP and FN, making it
very effective in practical use. selectKbest further optimizes feature selection, improving the model's efficiency by minimizing
complexity and focusing on only the most appropriate features. GRU is always better than other models, such as CNN, SVM, and
LR, as it was found to perform much better with sequential data and to capture the complex trends in ransomware behavior. In
general, the proposed GRU can be described as a strong, precise, and effective solution to effective ransomware detection.

5 CONCLUSION AND FUTURE STUDY

The capacity to correctly comprehend ransomware's processes and describe its characteristics is crucial for effective malware
detection. This would aid in distinguishing ransomware from authorized system operations. The paper demonstrates the
effectiveness of a GRU-based DL architecture for detecting ransomware using a large, diverse dataset of PE files. The results of the
experiment demonstrate that the proposed GRU model is more effective than other classifiers, achieving the highest accuracy of
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98.53%, compared to CNN (89.6%), SVM (92.5%) and LR (96%). The GRU model is especially good at identifying complex
ransomware patterns, given its sequential nature and time-dependent structure. The GRU model, though useful, was trained on fixed
PE files and could not adapt to evolving ransomware strategies. SMOTE-Tomek can introduce artificial noise, and GRU memory
can fail when encountering intricate, long-term trends.

Future work will explore dynamic data, hybrid architectures like GRU-attention, and explainable Al for transparency. Real-world
deployment will validate scalability and resilience.
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