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Abstract: A critical part of investing is to optimise the portfolio management, enabling the maximisation of profits whilst reducing
risk. This study optimizes a portfolio using a hybrid deep learning model that incorporates Gated Recurrent Units (GRU) and
Bidirectional Long Short-Term Memory (BiLSTM) networks, since the complexity of financial markets may outstrip the
applicability of classical methods based on statistical models and historical data. The historical S&P 500 stock prices from October
2016 to 2023 were gathered and preprocessed using operations for missing value imputation, redundancy elimination, data
denoising, normalisation, and one-hot encoding. The most significant predictors identified by feature importance analysis were
momentum, liquidity, and volatility dynamics. The data were partitioned into training and test datasets, and the proposed hybrid
model was evaluated against LSTM, XGBoost, and Linear Regression models. The hybrid GRU-BiLSTM model outperforms
conventional approaches across assessment metrics such as R2 (95.80), RMSE (14.523), MAE (10.379), and MAPE (0.005). With
improved accuracy and strength in stock price forecasting and portfolio optimization, the results validate the hybrid model's
usefulness in both short-term and long-term time dependencies.
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1 INTRODUCTION

The optimization of a portfolio is an important aspect of financial engineering and risk management in the contemporary financial
market. Its main focus is to make the most out of the returns and bring the risks under control with the rational distribution of
different assets. The classical portfolio optimization models, These models are however, prone to various limitations when applied
in practice such as assumptions of market efficiency, correct distribution of returns and insensitivity to changes in the dynamic
market conditions [1][2][3]. The portfolio management process may be seen as both an information and an execution process.
Investors want to capture the value that exists between the information's value and the cost of execution [4][5][6]. This aims at
dynamic resource allocation so as to maximize portfolio returns, balance is a naturally difficult undertaking by investors.

Financial analysts and investment managers have long been interested in the most efficient use of portfolios as a tool for estimating
the most profitable asset investments with the least amount of risk [7]. The mathematical foundation for the building of efficient
portfolios that were on the efficient frontier was supplied by classical models such as Markowitz's Mean-Variance Optimization
(MVO) and the Capital Asset Pricing Model (CAPM) [8][9]. However, these models oversimplify things by assuming things like
regularly distributed returns and stable correlation, neither of which adequately account for the nonlinear, dynamic, and complex
nature of modern financial markets.

Local optimization of investment portfolios always be part of fund management, as it leads investors to the best possible performance
at minimum risk [10][11]. The classical methods of quantitative methods, especially the Mean-Variance model, developed by
Markowitz, deal with the idea of adjusting between returns and risk using the diversification principle [12][13]. However, these
conventional models are severely limited in their practical utility due to their inflexibility in dealing with the elements of rapid
market changes and the continual correlations that characterize financial markets, both of which are non-linear and dynamic
[14][15].

Machine learning (ML) provides analytical frameworks as a foundation, while deep learning (DL) enhances learning potential with
its complex neural networks; both methods are finding applications in intelligent portfolio selection thanks to the advent of big data
and Al [16][17]. Deep learning and reinforcement learning are setting a new standard for smart portfolio management. In such
models, the DL components are used to extract features and predict the market and the RL agents are trained to adopt the best trading
policies by means of rewards-based interactions with market environment [18][19]. DQN, PPO, and the Actor-Critic algorithms are
algorithms that update the weights of their portfolios dynamically in order to maximize the long-term cumulative returns [20][21].
This predictive-based modeling and adaptive decision-making is an important development of the stationary optimization to self-
learning autonomous financial systems.
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1.1 Motivation and Contribution

Portfolio optimization is a highly important issue in the financial markets; proper forecasting of stock prices may increase investment
choices and risk control to a large extent. Conventional models have difficulty in capturing intricate time-smoking patterns, and
nonlinear connections of financial time-series information. This supports the idea of combining GRU and BiLSTM networks into a
single deep learning model that can analyze both short-term changes and long-term relationships at the same time. The proposed
framework, which combines momentum, liquidity, and volatility dynamics, delivers higher forecasting performance, provides more
credible investment advice, and supports sounder portfolio optimisation decisions. The study has a number of major contributions
as follows:

e Yahoo Finance has collected and prepared the S&P 500's daily closing values from October 17, 2016, through October 13,
2023.

e Strong preprocessing steps such as missing value, redundancy, data denoising, normalization, one-hot encoding to
guarantee the high quality of input data.

e  Offers a realistic model to optimise a portfolio through the combination of a sophisticated deep learning algorithm to better
facilitate investment decision-making.

e Introduced a new hybrid GRU-BILSTM structure, which integrates the performance of GRU with the BiLSTM bi-
directional contextualising information in predicting stock prices better.

e R2, RMSE, MAE, and MAPE were some of the key performance indicators utilized to assess the model's accuracy and
dependability in making predictions.

1.2 Justification and novelty

The justification behind this study is to have more accurate and reliable portfolio optimization techniques that are able to capture
complex time patterns within financial markets. Conventional paradigms usually do not account for short-term changes or long-
term dependence on stock price data. This work is novelty-based on the combination of GRU and BiLSTM networks into a hybrid
network that takes advantage of the computational advantages of GRU and the bidirectionality of context cognition of BILSTM.
Moreover, the model uses momentum, volatility, and liquidity dynamics as additional characteristics, which improve predictive
ability and interpretability. The hybrid method offers a powerful, scalable framework for financial forecasting that is more effective
than traditional methods and can be used to make viable investment decisions.

1.3 Organization of the Paper

The following is the paper's structure: The study is organized as follows: Section 2 details previous research on deep learning
methods and portfolio optimization; Section 3 describes the dataset and data preprocessing process; Section 4 presents the
experimental results; Section 5 summarizes the key findings and suggests future research directions; and Section 6 concludes the
study.

2 LITERATURE REVIEW

The research studies on Portfolio Optimization Strategies have been reviewed and analyzed in detail to inform and improve this
study, and Table 1 presents a summary of recent work.

Geethanjali et al. (2025) The suggested approach takes these problems into account by using RL algorithms for accurate stock price
forecasting and Deep Q-Networks (DQN) for real-time BH/SS decision-making. The model's adaptive performance tracks market
fluctuations to maximize portfolio returns while minimizing risk. Because it simultaneously improves portfolio returns and manages
real-time risk proportions, the hybrid model outperforms conventional methods in dealing with market swings. The LSTM model
shows satisfactory effectiveness in identifying stock price correlations (R2 = 0.78), whereas the DQN model optimizes trading
decisions through cumulative reward [22].

Bhagwanrao and Bahadur Tiwari (2025) proposed system however, rely on neural networks for the process of pattern identification,
natural language processing (NLP) for sentiment analysis and the upsurge of ensemble models for reducing the risk diversification
strategies, it also helps in enhancing the speed, flexibility, and security of the same. This research helps develop the emerging group
of intelligent investment systems that provide a scalable, adaptive, and secure platform which changes the criteria of the modern
investment practices. The proposed system shows better performance than other methods with the maximum accuracy up to 96.2
%. It also provides the maximum value return of 93.5%, proving its predictivity and efficacy[23].

Giri and Singh (2025) conditions have caused troubles to the traditional portfolio management system, which is based on static
models, to allocate sub optimally. Using Deep Reinforcement Learning (DRL), this research finds a way around these limitations
by optimizing investment portfolios in real time. Three DRL methods, namely Policy Gradient (DDPG), Proximal Optimization of
Policies (PPO), and Advantage Actor-Critic (A2C) are scrutinized specifically. In this research, the DDPG outperforms the others
in terms of its annual return 23.1%, the PPO has the highest Sharpe ratio 0.998 for risk adjusted returns and A2C achieves long-
term stability with balanced risk[24].

© JGRMA 2025, All Rights Reserved 66



Vandana Upadhyay et al, Journal of Global Research in Mathematical Archives,

Zouaoui, Naas, 2025, An estimated mean square error (MSE) of 0.0218% was used to predict the ideal weights of optimal portfolios
with an estimated return of 1.7239%, risk of 1.1219%, and a Sharpe index value of 1.5365% in LSTM network-based portfolio
management strategies. In the volatile and complicated cryptocurrency market in particular, ML is a great tool for optimizing
portfolios [25].

Sharma and Nagpal (2024) employ and examine three well-known DRL methods, namely DQN, PPO, and TD3 for enhancing the
portfolio’s performance. For performance evaluation, they use a comprehensive dataset of historical price data and other financial
ratios accumulated. Among the DRL models considered here, TD3 recorded the highest total return of 145.8%, the highest risk-
adjusted returns with a Sharpe ratio of 1.40, the maximum drawdown of 11.8%, and the lowest volatility of 11.5%. These outcomes
reveal the efficiency and stability of the application of DRL approaches in financial portfolio management a new and efficient
strategy for improving portfolio management for investors and financial institutions using better computational algorithms[26].

Lawton and Jeewa (2024) using different lengths of prior data in calculating these metrics. While none of the agents trained using
the risk-incorporated reward functions outperformed the agents trained using the portfolio value reward function in average
cumulative return, the agents trained using the risk-based functions showed lower standard deviations in cumulative return across
all experiments, suggesting the use of these reward functions to be more stable approaches to portfolio optimization. best results
show a 9.3% average annualized return using a Sharpe ratio reward function that uses a 15-day window of historical data for
calculation and a 10.4% average annualized return using a portfolio variance reward function that uses a 5-day window of historical
data[27].

Singh et al. (2024) employed for feature selection, dynamically assigning importance weights to key financial indicators and
prioritizing relevant data points. Hyperparameters are fine-tuned for optimal performance. The model’s effectiveness is evaluated
through rigorous backtesting against historical data, with performance metrics such as annualized return, Sharpe ratio, and maximum
drawdown compared to other indices. The DNN achieved a remarkable accuracy of 99.13%. Finally, the model is deployed in a live
trading environment, where continuous monitoring and periodic retraining ensure adaptation to evolving market conditions and
sustained portfolio optimization[28].

Research Gaps: Despite significant advancements in portfolio optimization using machine learning and deep reinforcement
learning, several gaps remain. Most existing models rely heavily on historical price data and overlook the dynamic influence of
macroeconomic factors and market sentiment. Many approaches focus on single-algorithm solutions, limiting their ability to capture
both short-term fluctuations and long-term dependencies simultaneously. Computational complexity and high resource requirements
restrict the scalability of hybrid and ensemble models. Risk management strategies are often simplified, ignoring real-time volatility
and market shocks. Feature selection and interpretability of deep learning models remain challenges, reducing transparency for
investors. Additionally, few studies explore live deployment and continuous adaptation of models in real-time trading environments.
Addressing these gaps can enhance predictive accuracy, robustness, and practical applicability of portfolio optimization frameworks.

Table 1: Recent Studies on Portfolio Optimization Strategies Using Machine Learning

Author(s) & | Dataset Used Key Findings Challenges Limitations Future Work

Year

Geethanjali Historical stock | Proposed a hybrid RL- | Market volatility | Model Extend to multi-

etal. (2025) | price data LSTM model integrating | handling, real- | performance asset and cross-
DQN for real-time | time decision- | depends on | market learning
Buy/Hold/Sell  decisions. | making, and | cumulative frameworks for
Achieved R? = 0.78 with | adaptive learning | rewards; limited | global trading
improved portfolio return | for fluctuating | generalization optimization.
and adaptive risk | environments. across  multiple
management. sectors.

Bhagwanrao | Financial Integrated Neural Networks | Pattern Focused primarily | Incorporate  real-

&  Bahadur | market and | and NLP for sentiment- | identification and | on sentiment data; | time news analytics

Tiwari sentiment based ensemble investment | sentiment may underperform | and reinforcement

(2025) datasets model achieving 96.2% | integration for | with high- | learning for
accuracy and 93.5% return. | diversified frequency trading | adaptive  market
Enhanced flexibility, | investment scenarios. behavior.
scalability, and security. decision-making.

Giri & Singh | Stock portfolio | Utilized DRL (A2C, DDPG, | Overcoming static | Computational Combine multi-

(2025) datasets PPO) for real-time portfolio | portfolio cost and training | agent DRL for
optimization. DDPG | allocation complexity of | cooperative trading
yielded 23.1% return; PPO | inefficiencies in | multiple DRL | and dynamic asset
had highest Sharpe ratio | traditional algorithms. rebalancing.
(0.998). systems.
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Zouaoui & | Cryptocurrency | Applied LSTM for optimal | Portfolio LSTM limited by | Integrate hybrid
Naas (2025) | market data portfolio weight prediction | optimization in | sequential LSTM-Attention
with low MSE (0.0218%), | highly = volatile | dependency; less | models to improve
return  (1.7239%), risk | crypto markets. responsive to | interpretability and
(1.1219%), Sharpe ratio abrupt market volatility
(1.5365%). adaptation.
Sharma & | Historical price | Evaluated DQN, PPO, TD3; | Enhance portfolio | Requires large | Implement
Nagpal and financial | TD3 achieved best | efficiency and | historical datasets; | federated DRL and
(2024) ratio datasets performance with total | reduce volatility | may overfit to | transfer learning for
return (145.8%), Sharpe | using DRL-based | specific assets. broader
ratio (1.40), drawdown | trading. generalization.
(11.8%).
Lawton & | Stock market | Compared reward | Improving reward | Limited by | Adaptive, self-
Jeewa (2024) | data with | functions; risk-based | design for | dependency  on | tuning reward
variable time | reward improved stability. | stability in | predefined mechanisms for
windows Achieved 9.3-10.4% | portfolio window sizes; | better robustness in
annualized return | optimization. inconsistent changing markets.
depending on  reward generalization
function. across timeframes.
Singh et al. | Historical DNN with dynamic feature | Automated High dependency | Extend model with
(2024) financial data | selection achieved 99.13% | feature weighting | on  quality  of | explainable Al
for backtesting | accuracy; validated via live | and adaptive | financial (XAI) and
trading with continuous | portfolio indicators; limited | reinforcement-
retraining for sustained | optimization. interpretability. based online
optimization. retraining

3 RESEARCH METHODOLOGY

The proposed methodology for S&P 500 stock price prediction and portfolio optimisation presents an end-to-end machine learning
framework that integrates predictive analytics with strategic asset allocation in Figure 1. The first step is extensive data
preprocessing, including handling missing data points, eliminating redundant features, denoising, and applying one-hot encoding
and Min-Max normalisation to make the data consistent. Once the importance of features has been determined, the dataset is divided
into two parts of the training and testing set to apply a Hybrid GRU-BIiLSTM model that considers both forward and backward time
dependence to predict stock prices. These expected prices are then inputted to an optimization model based on a MPT that utilizes
both a mean-variance analysis and optimization of Sharpe ratios to build diversified risk-adjusted portfolios based on S&P 500
assets. Statistical error measures such as MAPE, RMSE, MAE, and R 2 are used to evaluate model performance, whereas cumulative
returns, volatility, maximum drawdown, and Sharpe ratio evaluate portfolio effectiveness, demonstrating the strength and validity
of the suggested hybrid deep learning method for financial forecasting and optimal investment decision-making.

S&P 500 dataset
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Figure 1: Proposed flowchart for portfolio Optimization Strategies Using Hybrid Deep Learning
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The proposed methodology is detailed step-by-step in the section that follows:
3.1 Data Gathering and Analysis

The data used in this study came from Standard & Poor's 500 (S&P 500) historical prices on Yahoo Finance, covering October 13,
2023, to October 17, 2016. The dataset consists of daily closing stock prices, which serve as the model's dependent variable. Data
visualizations such as bar plots and heatmaps were used to examine attack distribution, feature correlations, etc., are given below:

o6

s

-2

~-D4

wvao
- ~0a

US DOLLAR INDEX
FEDEMAL PUND - S0 433 03505 4% a1y Q13 0121 0N ALY 22 92 400
V V v v J v 1 v ' ' J

a o - o

§ & £ 8§ ¢ e g ;'Ei' T8 5 8
é,_.s§$ ?ﬁi'r'ggé";i

Figure 2: Correlation Matrix Heatmap on S&P 500 dataset for Portfolio Optimization Strategies

A correlation heatmap illustrating the pairwise relationships between S&P 500 stock market features and technical indicators in
figure 2. Various variables such as Open, High, Low, Close prices, trading volume, moving averages (MA50, EMA20), technical
indicators (CCI, ATR, BOLL, RSI, MACD), and macroeconomic factors (US Dollar Index, Federal Fund Rate) are shown in the
color-coded matrix, which varies from dark blue (strong positive correlation, +1.0) to light blue (weak or negative correlation). This
allows for the extraction of useful features and the removal of unnecessary ones.
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Figure 3: Feature Importance
Figure 3 illustrates the importance of various features in determining model performance. The most important feature that appears
to be the most influential is Momentum Liquidity, then Volatility Dynamics, High Low Spread and Liquidity Stress, which are also
the important features. At the same time, the RSI, Smoothed Return, Amihud_Illiquidity, Short Momentum, and Long Momentum
are also comparatively less significant, meaning that they have a less significant effect on the total forecast.

3.2 Data Pre-processing
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Data preparation involved concatenating, cleansing, and engineering features from S&P 500 data. The preprocessing stage entailed
the management of missing data, eliminating redundancy, data denoising, and data leveling and normalization. The most important
steps in preprocessing are summarized as follows:

e Handle missing value: A critical preprocessing step in ensuring data completeness and dependability is handling missing
values. The entries that were missing were also recognized and addressed accordingly with the help of some techniques
like a mean or median imputation to maintain the integrity of the data.

¢ Eliminate Redundancy: Elimination of redundancy entails finding and deleting redundant or highly correlated features
that give redundant information. The model is more efficient and understandable because it holds unique and relevant
variables.

e Data denoising: Data denoising is aimed at eliminating any undesired noise/variation in the data to ensure better signal
quality. Such methods as smoothing, filtering or wavelet are utilized so that important patterns are retained and irrelevant
variations are removed.

3.3 Feature Importance

Feature significance is used to assess each variable's contribution to the model's predictive capability, facilitating the evaluation of
which variables exert a substantial influence on the output and which have minimal impact. Such an analysis does not only ensure
better interpretation of the model but also helps select features in a manner that make the model more efficient and accurate. This
makes it important to focus on features of the greatest influence like Momentum, Liquidity, and Volatility Dynamics without
necessarily focusing on the other aspects that might not make a big impact on the model and trim down the model to make it simple
and effective.

3.4 One Hot Encoding

The process of converting data into a different format in order to make it usable by processing, storage, or transmission is called
data encoding, and may change categorical or text data into numerical forms comprehensible to machine learning models. One-hot
encoding is used to encode data and is a method of data encoding, where categorically-coded variables are transformed into a binary,
vector format, where each category is coded as a distinctive pattern of Os and 1s.

3.6 Min-Max Normalization

The minmax method of normalizing the records was used to make sure that the values fell within range 0 to 1 so that the performance
of the classifier could be improved and outliers would be minimized. In order to make the normalization, the following mathematical
formula (1) was used:

X~ Xmin

X' =

Xmax—Xmin

(1

Xomin represents the minimum value, X,,,, stands for the maximum value, X’ stands for the normalized value, and X is the beginning
value of the feature.

3.7 Data Splitting

The dataset was split into halves: 70% for training and parameter estimation, and 30% for testing and performance evaluation. This
allowed us to check how well the model worked.

3.8 Classification equation of hybrid model of Bi-LSTM+GRU

3.8.1 Gated Recurrent Unit (GRU) Model

Training a model with an LSTM neural network takes longer because of the network's more intricate internal structure and the
difficulty of adjusting its parameters. GRU, a streamlined LSTM variant. The GRU model provides similar predictive accuracy to
the LSTM model while requiring less time to train. Because GRU merges the input and forget gates of LSTM into a single update
gate, the memory module is simplified to only two gating components—the update gate and the reset gate structure—as seen in
figure 4. This is the formula that the update gate uses to capture data, as shown in equation (2):

Zy = oWy = [he_q, X ]) 2

A critical component in determining the degree of historical data preservation is the reset gate, abbreviated as R;. A smaller reset
gate value indicates a greater capacity to store historical data.
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Figure 4: structure of GRU model

Here is the formula for the reset gate to obtain information: eqn (3):

Ry = oW, = [he—1, X¢]) 3)
Where h, represents the unit's output state at time t and h, stands for the assumed state value of h,. The current unit's data is stored
and delivered to the next unit using this value, while the forecasted value for the output at the prior instant is calculated using
equation (4).

he = tanh(Wr * [r * he_y, X,]) “4)
The predicted results of the water quality parameter data can be represented by equation (5).

he = —Z)*h_y+Z xh (5)
The input data value at the current moment ¢, is represented by X;, the output value of the water quality parameter data in the
memory cell at moment t — 1, is denoted by h;_, the weight matrices in the cell are W, W,., and W, "[]" indicates the connection
of two matrices, “*” shows the matrix product, ¢ is the activation function, and tanh is the bisecting curve of the activation function.
3.8.2 Bidirectional Long Short-Term Memory (Bi-LSTM) Model
The forward hidden layer in a Bi-LSTM transmits information from the past to the future, while the backward hidden layer performs

the same function in the opposite direction. The data representation capabilities of Bi-LSTM are superior to those of standard LSTM
when used to deep learning systems. The following explanations (6 to 8) provide light on the Bi-LSTM output:

h', = LSTM(x;, b 1_;) (6)
hY, = LSTM (x;, h?,_,) (7)
Ve = Woh + b, (8)

The output layer's bias vector is represented as b,, the weights from the forward and backward layers are written as W/ hy and
wb hy» respectively. h/, and h?, are the elements that constitute h,. When learning, Bi-LSTM makes use of both past and future
data simultaneously, or "t."

3.8.3 Proposed Hybrid model of Bi-LSTM+GRU

This study's overarching goal is to optimize portfolios utilizing a BILSTM and a hybrid recurrent unit (GRU) model based on DL.
The recommended hybrid architecture combines the strengths of BILSTM networks with GRU to manage sequential data with both
short-term and long-term dependencies. GRUs are computationally and curb the vanishing gradient issue and BiLSTM is able to
process the sequence forward and backward, improving contextual comprehension as well as forecasting precision. The hybrid
method is specifically applicable to time-series forecasting and sequence modelling problems whereby the focus is on identifying
the temporal patterns. GRU updates are characterised by eqn (9 to 12):

z; = o(W,xe + Uzheq + b,) ©
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1, = o(Woxe + Uphe_q + by) (10)
’Tlt = tanh(tht + Uh(rtth_l) + bh) (11)
he=(1—-2)0Ohi(4 +Zt®ﬁt (12)

The GRU+BILSTM hybrid model is a good compromise between computational capabilities and predictive performance, and thus
is a solid option when working with sequential data. GRU component enhances faster learning and retains critical memory, and
BiLSTM component preserves bi-directional relationships leading to be better at forecasting.

Layer (type) Output Shape Param #
input (InputLayer) (None, 60, 10) 0
BILSTM (Bidirectional) (None, 60, 128) 73,728
Dropout {Dropout) {None, 60, 128) 0

GRU (GRU) (None, 64) 37,440
Dense (Dense) (None, 32) 2,080
Output (Dense) (None, 1) 3
Total Parameters - 113,281
Trainable Parameters = 113,281
Non-trainable Parameters - 0

Figure 5: model summary of Bi-LSTM+GRU

the Hybrid BiLSTM + GRU model proposed to optimize a portfolio, with the composition of the layers, the dimensions of the
output, and the number of parameters presented in figure 5 The input layer of the model accepts time-series data with 10 features of
60 timesteps, and the bidirectional LSTM layer (73,728 parameters) is used to represent the contextual dependencies in both
directions. A GRU layer (37,440 parameters) is added to prevent overfitting. It is computationally simple and can learn
consecutively. Thereafter, the extracted representations are refined by a dense layer containing 2,080 parameters and the final output
layer is used to produce the stock price prediction.

Experimental findings indicate that this architecture performs better than single GRU or LSTM models for error reduction and
convergence rate.

3.9 Evaluation metrics

Model evaluation is one of the most important processes in machine learning projects because it provides information about a
model's performance and makes results interpretable and presentable. Predicting the exact values of regression exercises isn't always
easy, so the focus is on how close the predicted values are to the real values. The models were assessed in this research based on
four performance measures, namely, R 2, MAE, RMSE, and MAPE.

3.9.1 R-Squared

R2 is a statistic that determines the fitting of the regression model. R2 can lie between 0 and 1 with the higher the value, the more
the model fits the data. R2 values between 0 and 1 indicate that the model adequately describes the data on the response around the

mean, whereas R2 values between 1 and 0 indicate that the model adequately describes all of the variability. To determine R2, use
the formula (13):

T i—y)?
R2= i=1\Vi™ Vi 13
S i-)? (13)

3.9.2 Mean Absolute Error (MAE)
MAE is a widely used metric for measuring the accuracy of a predictive model. It determines the mean value of error in a sequence

of predictions, but does not take their direction into consideration. A smaller value of MAE indicates high performances. The
equation of MAE calculation is (14):

MAE = =371 = D) (14)

Where,
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Y is the actual value,
Y is an approximate value and n is the observations.
3.9.3 Root Mean Squared Error (RMSE)

This measure is a square root of MSE. RMSE measures the distance between predictions of a model and the reality. Reduces the
level of RMSE values show improved model performance. The equation to establish the RMSE is (15):

- .
RMSE = | X, = ¥i)? (15)

3.9.4 Mean Absolute Percentage Error (MAPE)

MAPE is a calculation of errors based on percentages; it is an average percentage deviation between predictions and their target
values in the data. The MAPE may also be regarded as the MAE that is returned in a percentage (16).

1 i~ P 2
MAPE =3,/ (%) /%100 (16)

A combination of these measures provides information on the model's accuracy and forecasting efficiency.
4 RESULTS AND DISCUSSION

This section outlines the experimental design and presents the performance of the proposed model during both the training and
testing phases. The stock market trend prediction model was conducted in an experimental environment based on a system with
Intel(R) Xeon E3-1230 v6(3.50 GHz) processor and an NVIDIA Quadro M2000 gpu to perform the stock market trend forecasting.
Table 2 summarizes the system's performance data, which included 16 GB of RAM, the CDW 10 platform, and enough resources to
accomplish deep learning tasks. Classification results of the suggested portfolio optimization strategies on the S&P 500 data show
that the Hybrid GRU-BILSTM model performs quite well. With a root-mean-squared error of 14.523 and a mean absolute error of
10.379, the model performed admirably in predicting the actual portfolio returns with few errors. Regarding the measured data, the
Mean Absolute Percentage Error (MAPE) was 0.005, which is considered satisfactory. The model is highly successful and efficient
in the role of portfolio optimisation, as indicated by the R 2 of 95.8 per cent, which further suggests that it can capture a large part
of the data variation.

Table 2: Classification results of the proposed Portfolio Optimization Strategies using the S&P 500 dataset

Matrix Hybrid GRU+BIiLSTM Model
RMSE 14.523
MAE 10.379
MAPE 0.005
R2 95.8
SA P00

= Reul

oAb NV AN AN

a4 ARV WAL

o . l ( | J

1 L';’\H :", \\ /
W

Day

Figure 6: The line charts for the Hybrid GRU+BiLSTM Model
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Figure 6 shows the actual performance of the S&P 500 index in 500 days against an estimate suggestive price of a model. In the
Real data, there are notable volatility and a number of different periods: the first 200 days are characterized by an increase followed
by stabilization, days 200-350 are illustrated by a sharp decline and recovery, and the last 500 days are marked by a high volatility
and general growth in prices that reaches the level of 2200.
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Figure 7: Loss curves for the Hybrid GRU+BiLSTM Model

The loss function converged to a model in 50 iterations. The loss is large (almost 0.00180) at the beginning but decreases rapidly in
the early iterations and eventually levels off at a middle value around the second iteration. The second minor yet meaningful sharp
decreasing trend is at approximately iteration 8 that pushes the loss to about 0.00145 in figure 7. Beyond this, the loss curve almost
levels off and holds constant as the number of iterations continues to 50, which suggests that the optimization process has reached
a minimum loss value.

4.1 Comparative analysis

Table 3 shows a comparative accuracy analysis of Hybrid GRU-BiLSTM model with the existing models to determine its usefulness.
The purpose of this evaluation is to compare and contrast several deep learning and machine learning models that have been used
to optimize portfolio strategies using the S&P 500 dataset. The results demonstrate that the traditional models, which comprise
LSTM, XGBoost, and Linear Regression (LR), exhibit reasonable predictive accuracy with R2 values of 77%, 75.6%, and 79.9%,
respectively. A far more accurate and trustworthy indication to use the model to optimize a portfolio would be the proposed Hybrid
GRU-BILSTM model, which outperformed these alternatives with a R 2 of 95.8, demonstrating higher capability to detect non-
linear patterns in the data.

Table 3: Comparison of Different Machine learning and deep learning Models for Portfolio Optimization Strategies

Model R2
LSTM[29] 77
XGBoost[30] 75.6
LR[31] 79.9
Proposed Hybrid GRU-BiLSTM model 95.8

The Hybrid GRU-BiLSTM model proposed has an R2 value of 95.8%, significantly higher than those of the conventional ML and
single DL algorithms. The model improves the computational efficiency of GRU with the BiLSTM bidirectional time processing
feature by effectively addressing both short- and long-term relationships in financial time-series datasets by means of their intricate,
synergistic use, preventing overfitting and information loss and providing the model, with robust predictions and accuracy, to
optimize a portfolio and make effective investment decisions.

5 CONCLUSION AND FUTURE STUDY

In the modern financial market environment, where markets can change rapidly, predetermined portfolio management methods
cannot handle complex situations and volatility. practical application of DRL to construct intelligent and autonomous trading
policies of the financial portfolio. The analysis of the results reveals that the proposed hybrid GRU-BiLSTM model is superior to
the classic models, including LSTM, XGBoost, and Linear Regression, when estimating S&P 500 stock prices. The hybrid model
has a high precision and reliability in long-term and short-term forecasting as it has a high R2 of 95.8, which represents both short-
term and long-term temporal effects. This shows the merit of combining GRU and BiLSTM networks with sequential financial data,
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highlighting the model's strength and potential to optimise portfolio strategies. Investor sentiment analysis, news analytics, and
volatility indices will be incorporated into future work using natural language processing to increase prediction accuracy. Also,
dynamic portfolio rebalancing using reinforcement learning and explainable Al methods will be adopted to develop autonomous,
interpretable, and adaptive financial decisions.
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