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Abstract: IoT sensor networks are becoming increasingly dependent on real-time anomaly detection and predictive analytics
technology to analyze continuous data streams in order to make trustworthy decisions in a timely manner. Deep learning offers
advanced techniques that can handle the scale and complexity of such data more effectively than traditional methods. This paper
gives a complete picture of how loT-based predictive analytics and anomaly detection are enhanced using deep learning. The
capability of extracting hierarchical information, modelling temporal-spatial relationships, and identifying subtle anomalies in
real-time is displayed by models like the autoencoders, generative adversarial networks (GANS), transformers, etc. These methods
enhance the accuracy of forecasting, the system's resilience, and its adaptability across many domains, such as healthcare, industrial
IoT, and smart infrastructure. Despite this, and especially given scalability, computational requirements, and the limited
availability of labelled data, key challenges remain. Addressing these issues is critical in ensuring strong deployment in resource
constrained IoT systems. Future directions include light-weight architectures, privacy-preserving learning and explainable models
to drive towards the reliability and intelligence of IoT driven applications.
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1 INTRODUCTION

The term "internet of things" (IoT) means a network of connected computing devices, services, and physical things that are able to
collect, process, and share information. The "internet of everything" or IoT is a paradigm shift that bridge the gap between the
digital and physical world through an interconnected system of computers, sensors, the internet, and the Internet of Things, the
Internet of physical things, or connectivity, wireless, and RFIs, embedded systems and communication technologies [1] [2]. Any
hardware, software or sensors can be a part of the system approach. Internet of Things (IoT) helps to manage security and data.
The Internet of Things (IoT) is the remote connection of devices and people [3]. Acute stress, smart buildings, smart cities and
vehicle-to-vehicle reaction are only a couple of examples of the numerous possible applications of the Internet of Things.

Predictive analytics has become a very important aspect in the age of big data and Internet of Things (IoT) as a technique that has
the potential to radically change an organization's strategies for problem-solving, decision-making and increasing productivity [4].
The proliferation of Internet of Things (IoT) devices in numerous sectors has led to the accumulation of huge amounts of real time
data generated by sensor networks, machine networks, and other interconnected systems. When properly analyzed, this massive and
sometimes disorganized source of data can help firms gain insight, improve their strategy, streamline their operations and reduce
their impact on the environment [5]. Every industry on the planet stands to benefit immensely from the potential of data analytics
and real-time decision-making offered by the fusion of IoT and in AI. Through its huge collection of connected devices, the Internet
of Things (IoT) generates copious amounts of data from an extensive range of sources, such as sensors, machines, automobiles, and
even wearable gear [6] [7]. It has become apparent that machine learning models and other artificial intelligence analytics
technology are necessary for businesses to mine this data for insights.

Anomalies in the Internet of Things (IoT) data are uncommon, but still occur, and can result in great insights for many different
industries, including healthcare, manufacturing, banking, transportation, and energy, underlining the importance of identifying
anomalies. One industry where anomaly detection is used in the internet of things is the betting and gambling industry. They use it
to detect insider trading by analyzing the historical pattern of transactions. Meanwhile, industrial machinery uses a detection
algorithm and ensures the security of production [8] [9]. When it comes to detecting possible problems with the functionality,
security or performance, the role of anomaly detection plays a crucial role in the detection of problems before they become a bigger
issue. An abundance of domains have made heavy use of traditional methods of anomaly detection such as rule based systems and
statistical models [10]. Due to the inherent complexity and high dimensionality of IoT data, these approaches tend to underperform
when it comes to detecting minor or evolving anomalies [11].

1.1 Structure of the paper
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The structure of the paper is as follows: Section II discusses memory controller fault tolerance, Section III talks about security-
aware designs, Section IV talks about integrated techniques and new trends, Section V analyzes the literature, and Section VI ends
with recommendations for the future.

2 APPROACHES TO PREDICTIVE ANALYTICS IN IOT

Predictive analytics is the root method that collects real-world data from the IoT that contains practices, results or future occurrences.
To deal with the huge amount of heterogeneous data generated by the Internet of Things (IoT), data processing makes use of a wide
variety of models, and each which has its set of advantages. The main models of predictive analytics and their connections with
processing data from [oT systems are emphasized in this section.

2.1 Traditional and Statistical Methods

Traditional methods in IoT predictive analytics include: regression models, time series forecasting (e.g. ARima), rule-based
approaches. They use historical data to predict trends or detect anomalies. The simplicity and computational efficiency of these
methods make them ideal for small sensor networks, but they fail miserably when faced with complicated, real-time IoT data
including high dimensions. Predictive approaches of the Internet of Things are illustrated in Figure 1.
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Figure 1: Methods in [oT Data

e Regression-Based Models: Regression models are most effectively utilized in scenarios where the dependent variable is
continuous, comprising a wide range of possible values. These kinds of data might include temperature readings or any
number of other continuous variables. Finding out how much of an effect the explanatory variable has on the dependent
variable is the main goal of applying regression models in these environments.

e Time-Series Forecasting: The most distinctive feature of time series data compared to other forms of information is the
passage of time. In addition to providing more information for their analysis, this attribute of theirs is a constraint and a
structural component of the data gathering [12]. A collection of observations of a variable grouped into equally spaced
time intervals is the basic definition of time series data, which can be any type of information shown as an ordered sequence.

e Rule-Based and Heuristic Approaches: One of the most important uses of predictive modelling is in the identification
of fraud. While traditional rule-based systems do a good job, they can't always keep up with the changing patterns of fraud.
In order to identify irregularities that could be signs of fraud, ML models, such as NN and SVM [13], can conduct real-
time analyses of massive datasets.

2.2 Machine Learning-Based Predictive Analytics

An IoT monitoring system that gathers data from the environment, including temperature, humidity, and accelerometers and
gyroscopes, can be created in real time and have used various machine learning models to this processed data in order to make
predictions. By combining supervised and unsupervised learning methods, a hybrid machine learning algorithm outperforms its
competitors. A variety of hybrid methods are employed for the purpose of prediction [14]. An assortment of ML methods for IoT
anomaly detection are illustrated in Figure 2.
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Figure 2: Different Machine Learning Methods

e Supervised Learning Models: Supervised learning is utilized on datasets with labeled outcomes, allowing the model to
understand the relationship between inputs and final results, including the detection of outliers. It is one of the most widely
used approaches in organizations and industries due to its effectiveness in classification and prediction tasks [15]. Common
supervised learning algorithms include SVM, DT, NN, Bayesian Networks, and KNN. These algorithms, often referred to
as discriminative models, leverage labeled instances to facilitate classification-based learning.

e  Unsupervised Learning Models: Anomaly detection using unsupervised learning has just begun to acquire relevance.
Unlabeled data pattern learning is a machine learning technique that doesn't require explicit user guidance. In order to
discover hidden patterns or correlations, the algorithm investigates the data structure rather than receiving accurate outputs
[16]. In this learning models like, K-means clustering, isolation forest etc.

o Ensemble Methods: Several models, also referred to as weak classifiers, are trained using ensemble learning, a paradigm
in machine learning. In order to achieve better outcomes than any one algorithm could on its own, these models are
integrated using various voting procedures and are based on features collected from multiple data projections[17].

2.3 Deep Learning Approaches for IoT Data

Deep learning uses NN to efficiently identify abnormalities, discover intricate patterns, and evaluate IoT data [18]. DNNs are just
as successful in anomaly identification in the Internet of Things as they are in domains like NLP and vision. Figure 3 shows the
various deep learning models used in IoT sensor networks to detect anomalies.
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Figure 3: Different Deep learning Approaches
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e Recurrent Neural Networks: The quantity and quality of training data have a significant impact on hydrological
prediction using standalone RNN, LSTM, or GRU models. High-dimensional datasets with a wide range of hydrological
and meteorological parameters make complex relationships easier for the model to understand [19]. The absence of easily
accessible, continuous, high-quality data is a significant barrier to applying DL models for hydrological prediction.

e Convolutional Neural Networks: A powerful family of DL models, CNNs are utilized in many different applications,
such as object detection, bioinformatics, computer vision, picture classification, and speech recognition [14]. They have
also successfully completed time series prediction tasks. To extract features from data, feedforward neural networks called
CNNs use convolutional layers. To automate feature extraction and enable end-to-end training with minimal preprocessing,
the CNN employs a two-stage design that integrates a classifier and a feature extractor.

e Hybrid and Advanced Architectures: The benefits of GRU-LSTM layers for mimicking temporal relationships and
CNN s for extracting spatial data are combined in the Hybrid CNN-GRU-LSTM model [20]. CNN efficiently captures
spatial correlations among road segments by leveraging vehicle flow patterns in nearby areas, while the GRU and LSTM
layers collaborate to learn both short-term fluctuations and long-term trends in traffic flow data.

Table 1 compares predictive analytics approaches for IoT data, focusing on traditional and statistical, ML, and DL approaches. It
summarises their methods, data requirements, advantages, limitations, and use cases, offering a clear overview to help choose

appropriate approaches for IoT applications and data complexity.

Table 1: Comparative Overview of Predictive Analytics Approaches in [oT Data

Aspect Example Methods | Data Advantages Limitations Use Cases
Requirement
Traditional | Regression (Linear, | Historical or | Simple, Limited scalability to | Predicting
& Multiple, Logistic), | structured computationally high- temperature, energy
Statistical | Time-Series sensor  data; | efficient, dimensional/streaming | usage, humidity
(ARIMA, Holt- | predefined interpretable, good for | data; may not adapt to | trends, fraud
Winters), Rule- | variables; basic trend prediction | evolving or nonlinear | detection, simple
Based & Heuristic | smaller and threshold-based | patterns anomaly detection in
Approaches datasets anomaly detection IoT
Machine Supervised (SVM, | Labeled Accurate, adaptable, | Resource-intensive, Predictive
Learning- | Decision Trees, | (supervised) detects complex | may overfit, complex | maintenance, fault
Based Neural Networks), | or unlabeled | patterns/anomalies, implementation, detection,
Unsupervised (K- | (unsupervised) | works for diverse IoT | requires data | classification,
Means, Isolation | IoT data applications preprocessing anomaly detection
Forest), Ensemble
(Bagging, Boosting)
Deep RNN, LSTM, GRU, | Large, high- | Handles complex | Computationally IoT anomaly
Learning CNN, Hybrid | dimensional spatial-temporal heavy, requires tuning, | detection,  real-time
(CNN-GRU-LSTM) | datasets patterns,  automatic | large labeled data | time-series
feature extraction, | needed forecasting, multi-
effective for multi- sensor analytics,
sensor networks complex pattern
recognition

3 ANOMALY DETECTION IN IOT

A major concern in the Internet of Things (IoT) ecosystem is ensuring the reliability, efficacy and safety for all the connected
devices. Anomaly detection is becoming increasingly important as there is a huge amount of data coming from IoT devices.
Businesses can gain important insights and improve their efficiency with operations if they use anomaly detection correctly [21]. It
helps identify possible issues before they worsen. When a data point does not match the expected behavior of a modeled system, it
is considered an anomaly. As seen in Figure 4, anomalies are occurrences that are highly unusual and do not conform to the norms
or patterns seen in the dataset as a whole, in a particular context, or over a shorter period of time (such as a quarter or season) [22].
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3.1 Types of Anomalies

The type of anomaly that is sought after is a crucial component of anomaly detection techniques. The following three groups of
anomalies can be identified, as illustrated in Figure 5:
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Figure 5: Different Types of Anomalies

e Point Anomalies: Data may reveal point anomalies, sometimes called global anomalies. Although point anomalies are
the easiest to spot, a big challenge in this area is determining an appropriate measurement of the object's divergence from
other objects. In a typical network, each hub needs at least two neighbors that are connected to it [23]. Group V2's hubs
form this type of network, which is typical behavior; group V1, on the other hand, has isolated nodes.

o Contextual Anomalies: This kind of strange behavior happens when something that would be considered unusual in one
setting isn't in another. There are two categories of characteristics associated with contextual anomalies: contextual and
behavioural. Location datasets that include longitude, spatial, and latitude all have unique contextual features [24]. The
contextual feature of time in time-series data also shows the arrangement's position for each instance. The second trait is
seen as a trait of behavior.

e Collective Anomalies: These happen when a large number of continuous data points exhibit, in unison, aberrant behavior
that contradicts the behavior of other points. Collective anomalies in database systems are a series of seemingly legitimate
database operations that, when executed concurrently, reveal a system breakdown or an attack [25]. Common methods
for spotting group outliers include clustering and sequence analysis, such DBSCAN and sequence-based neural networks.

3.2 Anomaly Detection using Deep Learning

Deep learning models like autoencoders, GANs, and transformers can automatically learn patterns in IoT data and detect deviations
in real time. They handle complex, high-dimensional sensor streams better than traditional methods. These are some of the
approaches that help in improving the scalability, accuracy and adaptability for detecting anomalies in IoT networks.

e Autoencoder-Based Anomaly Detection: One type of neural network that mimics input from output is called an
autoencoder. The autoencoder uses the thump rule to compress the input into latent space and reconstruct the output [26].
One type of unsupervised machine learning is the auto encoder, sometimes referred to as a feature extraction algorithm.
Text, voice, images and videos are just some of the many types of input that autoencoder can handle.

e Transformer-Based Anomaly Detection: Anomaly detection and some other time series related tasks have witnessed
growth in the use of transformers due to efficiency in handling big data and complex dependencies. There are a number
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of models that are based on Transformers; these models vary in their strengths in the case of anomaly detection, important
contributions and some others [27]. When it comes to time series data for example, Anomaly Transformer is all about
gathering temporal relationships and distinguishing between the normal and the unusual. By comparing the expected and
actual patterns within the data sequences, it combines attention techniques in order to efficiently reveal the abnormalities
in [oT log data.

e  GAN-Based Anomaly Detection: A common deep anomaly detection approach is GAN-based anomaly detection, which
is gaining popularity rapidly [28]. In general, the goal of this method is to train a generative network's latent feature space
G such that it accurately represents the data's inherent normalcy. The anomaly score is a residual that exists between the
actual occurrence and the created one.

4 CHALLENGES OF 10T ANOMALY DETECTION

The machine learning model may need to be retrained or updated on a frequent basis due to potential changes in data patterns and
relationships brought about by the ever-changing nature of the IoT. The scarcity of labelled training data is another obstacle to
anomaly detection on the IoT. There are several challenges in deep learning to find anomalies:

o High dimensionality: There are usually a lot of sensors, devices, and data sources that contribute to the high dimensionality
of IoT data. Because algorithms must deal with a huge number of features and capture intricate correlations between them,
anomaly detection becomes more challenging due to this high dimensionality. To overcome this obstacle, dimensionality
reduction techniques might be necessary.

e  Scalability: The IoT creates real-time huge data sets. Anomaly detection systems need to be scalable in order to deal with
the rapid and massive amounts of data [29]. Fast, efficient algorithms and storage-and processing-capable infrastructure
are necessities for real-time processing of data sets of this magnitude.

o Context Information: The dispersed nature of IoT devices makes them ideal for gathering context data needed for
detecting anomalies. On the other hand, in large IoT deployments, where some IoT devices are mobile, it is sometimes
unnecessarily hard to capture the time-related input bl in relation to spatial contexts and input bn [30]. In other words, the
advantage of anomaly detection systems is that they are in a position to add information, but getting the right context right
can make them more complex.

e Profiling Normal Behaviours: Defining typical actions is tough, but having enough data about them is essential for an
anomaly detection system to work. Since they don't occur very frequently, sometimes the abnormal behaviors would be
lumped in with normal behaviors. For widely dispersed IoT devices in particular, supervised learning is not an option due
to a dearth of datasets capturing both typical and out-of-the-ordinary data from the IoT.

S LITERATURE REVIEW

This review summarises the progress in loT anomaly detection in terms of accuracy, robustness, and scalability. Approaches like
self-attention mechanism, GAN-based model, edge-enabled framework and hybrid approaches reflect the advancement towards
more reliable and adaptive IoT systems.

Yan et al. (2025) presented an IoT sensor data correlation and anomaly detection model based on a self-attention mechanism, which
is innovative on the basis of existing time series analysis and deep learning models. The model combines a multi-layer self-attention-
based architecture and a hybrid encoder-decoder architecture, which can extract temporal and spatial correlations in sensor data in
parallel. They proposed a new type of attention scoring function which can handle irregularities in sensor data, improving on the
traditional attention mechanism to better deal with missing values and sensor noise. The model further improves this aspect by
including a dynamic attention mechanism, which helps to focus on the most relevant sensor data sequences to correlate data and
separate out the anomalous patterns more effectively [31].

Gutierrez-Rojas et al. (2025) presented a model for detecting anomalies in IoT-enabled CPSs via WSNs. The model consists of
three main blocks of data in the cyber layer: sensor-based data acquisition, data fusion to transform raw data into information, and
analytics for decision-making. The logic behind these blocks shows the importance of anomaly detection and is illustrated by three
use cases, i.e. the selection of faults in power grids, the detection of anomalies in an industrial chemical process and the prediction
of the carbon dioxide level in a room [32].

Liet al. (2024) introduced UatGAN, a GAN-based technique for detecting anomalies in time-series signals from IoT devices without
manual supervision. The method combines autoencoders (AEs) and GANs, using the encoderdecoder structure of AE to learn
compressed representations of input data, and enhances sensitivity to anomalous inputs through adversarial training of GANs. Given
time correlation, the dynamic time warping (DTW) algorithm is used to compute reconstruction errors, and a new anomaly diagnosis
strategy is proposed. Experiments conducted on public datasets demonstrate that their method detects anomalies more accurately
than baseline methods [33].

Shahnejat Bushehri et al. (2024) developed a system to analyse data transmissions to identify IoT nodes experiencing energy
anomalies. They make use of a publicly available dataset comprising data on energy and link quality in peer-to-peer IoT

communication. To begin, their system examines data transfer for IoT transceivers using linear regression to determine the most
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important characteristics. At a later stage, the gradient flow is adjusted using a deep neural network in order to highlight the most
important properties. This adjustment reduces the corresponding reconstruction error, thereby increasing the accuracy of anomaly
identification. The last piece of information that nodes can use to improve their transmission configuration for future communication
is the energy stabilization feedback [34].

Zerkouk, Mihoubi and Chikhaoui (2023) introduced DGM-IF, an innovative unsupervised approach of anomaly detection for IoT
and wireless sensor networks. Anomaly detection and resilient normal data representation are attained by the combination of deep
generative models and Isolation Forest technique in DGM-IF. Using the learnt distribution as a basis, the model generates synthetic
data and the Isolation Forest is used to isolate the outliers. The proposed approach is evaluated on real-world datasets and compared
with state-of-the-art methods to demonstrate its effectiveness in detecting outliers. The DGM-IF method can detect possible threats
and attacks, which might greatly improve the security and dependability of IoT systems and wireless sensor networks [35].

Li et al., (2022) introduced ADRIoT, a framework for detecting anomalies in IoT networks that makes use of edge computing to
reveal possible dangers. Anomaly detectors, a traffic preprocessor, and a traffic capturer are the components of an anomaly detection
module that an edge can employ. These modules are further customized to each device type. An LSTM autoencoder builds each
detector unsupervised, so it can handle new zero-day attacks as they emerge and doesn't require labelled attack data. The edge
retrieve the matching detector from the cloud and run it locally whenever a device connects to it. Another issue is that deploying
such a detection module is hindered by the resource constraint of a single edge device, such as a home router [36].

Qiao, Zhang and Zhang (2022) suggested a GAN-based model for Internet of Things anomaly detection that can effectively learn
data patterns unsupervisedly, even when faced with contaminated training data. To facilitate effective representation mapping, the
new model incorporates the Bidirectional GAN (BiGAN) architecture, and to eliminate training-set noise, it uses the Robust
Principal Component Analysis (RPCA) method. The training approach incorporates a proximal method and Alternating Direction
Method of Multiplier (ADMM), and a new objective function and score function are meticulously constructed to enhance its
performance [37].

The recent IoT anomaly detection studies are summarized in Table 2 and they have shown improvements in accuracy, robustness
and adaptability. The main issues are scalability, efficiency, and generalization, and one of the directions of future work should be
lightweight models and deploying at the moment.

Table 2: Summary of Previous Study on IoT Anomaly Detection Approaches

Reference Study On Approach Key Findings Challenges / | Future Directions
Limitations
Yan et al, | IoT  sensor | Self-attention Captures temporal & | High  computational | Optimize lightweight
2025 data mechanism with | spatial ~ correlations, | cost for multi-layer | attention
correlation & | hybrid encoder- | handles missing values | self-attention; mechanisms; extend
anomaly decoder & sensor noise using | scalability issues for | to real-time IoT
detection dynamic attention large IoT systems monitoring
Gutierrez- IoT-enabled Cyber-layer Demonstrated Dependency on | Apply to broader
Rojas et al., | industrial CPS | model with data | effectiveness in power | wireless sensor | CPS domains;
2025 anomaly acquisition, grids, chemical | reliability; domain- | enhance adaptability
detection fusion, and | processes, CO: | specific model tuning for  heterogeneous
analytics prediction IoT systems
Lietal.,2024 | IoT time | UatGAN (AE + | Improved anomaly | GAN training | Develop more stable
series GAN + DTW) detection accuracy | instability; GAN architectures;
anomaly over baselines; novel | computationally heavy | apply to diverse IoT
detection diagnosis strategy DTW calculations datasets
Shahnejat Energy Linear regression | Identifies dominant | Limited to energy & | Extend framework to
Bushehri et | anomaly + deep neural | features; improves | link quality datasets; | multiple IoT
al., 2024 detection in | network with | anomaly detection by | model generalizability | domains; real-world
IoT nodes gradient reducing not proven deployment testing
modification reconstruction error
Zerkouk, WSN & IoT | Deep Generative | Learns robust normal | Synthetic data quality | Broader
Mihoubi & | anomaly Model + Isolation | data  representation; | affects performance; | benchmarking;
Chikhaoui, detection Forest (DGM-IF) | effective anomaly | limited evaluation | improve  synthetic
2023 detection in  real | scope data generation
datasets quality
Lietal.,2022 | IoT edge- | ADRIoT Detects zero-day | Resource constraints of | Optimize lightweight
based framework with | attacks without labeled | edge devices; | detectors; explore
anomaly LSTM data; edge-cloud | scalability challenges federated learning for
detection autoencoder integration distributed IoT
detectors
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Qiao, Zhang | [oT anomaly | BIGAN + RPCA | Handles noisy data; | Training complexity | Simplify training

& Zhang, | detection with | + ADMM robust  unsupervised | due to multiple | pipeline; expand

2022 noisy data anomaly detection integrated components | robustness to
different IoT noise
patterns

6 CONCLUSION AND FUTURE WORK

The heterogeneity, large scale, and limited resources of the IoT ecosystem have hindered cyberattack detection and prevention, as
this review demonstrates, and have also highlighted how deep learning can support real-time anomaly detection and predictive
analytics in IoT sensor networks. DL models are more effective than traditional statistical and ML models when processing large-
scale, high-dimensional, and heterogeneous IoT data. Autoencoders, GANs and transformers are some of the techniques that offer
adaptive and scalable methods to detect subtle anomalies or predict system behavior in a variety of fields, including healthcare,
smart infrastructure, industrial internet of things, and environmental systems. Deep models can vastly improve system durability,
efficiency, and decision-making accuracy by automatically extracting hierarchical features. Nevertheless, there are various
limitations, including the imbalance of the data, high computational and the lack of interpretability, and which are limiting the
scaling of this technology in resource-constrained IoT settings. In general, deep learning-based solutions can be viewed as a viable
direction of creating strong and intelligent IoT systems, leading to predictive, proactive, and secure IoT systems.

Future studies should focus on developing light and energy-efficient deep learning models capable of running on edge and fog
computing frameworks to eliminate reliance on cloud systems. Federated and distributed learning advances are potentially useful to
assure privacy and provide collaborative anomaly detection across the IoT devices. Also, predictive analytics and anomaly detection
in next-generation IoT networks will be further enhanced by adaptive models capable of adapting to changing IoT data patterns, as
well as integration of reinforcement learning to make decisions in real-time.
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