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Abstract: IoT sensor networks are becoming increasingly dependent on real-time anomaly detection and predictive analytics 

technology to analyze continuous data streams in order to make trustworthy decisions in a timely manner. Deep learning offers 

advanced techniques that can handle the scale and complexity of such data more effectively than traditional methods. This paper 

gives a complete picture of how IoT-based predictive analytics and anomaly detection are enhanced using deep learning.  The 

capability of extracting hierarchical information, modelling temporal-spatial relationships, and identifying subtle anomalies in 

real-time is displayed by models like the autoencoders, generative adversarial networks (GANs), transformers, etc. These methods 

enhance the accuracy of forecasting, the system's resilience, and its adaptability across many domains, such as healthcare, industrial 

IoT, and smart infrastructure. Despite this, and especially given scalability, computational requirements, and the limited 

availability of labelled data, key challenges remain. Addressing these issues is critical in ensuring strong deployment in resource 

constrained IoT systems. Future directions include light-weight architectures, privacy-preserving learning and explainable models 

to drive towards the reliability and intelligence of IoT driven applications. 
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1 INTRODUCTION 

 

The term "internet of things" (IoT) means a network of connected computing devices, services, and physical things that are able to 

collect, process, and share information.  The "internet of everything" or IoT is a paradigm shift that bridge the gap between the 

digital and physical world through an interconnected system of computers, sensors, the internet, and the Internet of Things, the 

Internet of physical things, or connectivity, wireless, and RFIs, embedded systems and communication technologies [1] [2].  Any 

hardware, software or sensors can be a part of the system approach.  Internet of Things (IoT) helps to manage security and data.  

The Internet of Things (IoT) is the remote connection of devices and people [3].  Acute stress, smart buildings, smart cities and 

vehicle-to-vehicle reaction are only a couple of examples of the numerous possible applications of the Internet of Things. 

 

Predictive analytics has become a very important aspect in the age of big data and Internet of Things (IoT) as a technique that has 

the potential to radically change an organization's strategies for problem-solving, decision-making and increasing productivity [4].   

The proliferation of Internet of Things (IoT) devices in numerous sectors has led to the accumulation of huge amounts of real time 

data generated by sensor networks, machine networks, and other interconnected systems. When properly analyzed, this massive and 

sometimes disorganized source of data can help firms gain insight, improve their strategy, streamline their operations and reduce 

their impact on the environment [5].   Every industry on the planet stands to benefit immensely from the potential of data analytics 

and real-time decision-making offered by the fusion of IoT and in AI.  Through its huge collection of connected devices, the Internet 

of Things (IoT) generates copious amounts of data from an extensive range of sources, such as sensors, machines, automobiles, and 

even wearable gear [6] [7].  It has become apparent that machine learning models and other artificial intelligence analytics 

technology are necessary for businesses to mine this data for insights. 

 

Anomalies in the Internet of Things (IoT) data are uncommon, but still occur, and can result in great insights for many different 

industries, including healthcare, manufacturing, banking, transportation, and energy, underlining the importance of identifying 

anomalies. One industry where anomaly detection is used in the internet of things is the betting and gambling industry. They use it 

to detect insider trading by analyzing the historical pattern of transactions. Meanwhile, industrial machinery uses a detection 

algorithm and ensures the security of production [8] [9]. When it comes to detecting possible problems with the functionality, 

security or performance, the role of anomaly detection plays a crucial role in the detection of problems before they become a bigger 

issue. An abundance of domains have made heavy use of traditional methods of anomaly detection such as rule based systems and 

statistical models [10]. Due to the inherent complexity and high dimensionality of IoT data, these approaches tend to underperform 

when it comes to detecting minor or evolving anomalies [11]. 

 

1.1 Structure of the paper 
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The structure of the paper is as follows:  Section II discusses memory controller fault tolerance, Section III talks about security-

aware designs, Section IV talks about integrated techniques and new trends, Section V analyzes the literature, and Section VI ends 

with recommendations for the future. 

 

2 APPROACHES TO PREDICTIVE ANALYTICS IN IOT  

 

Predictive analytics is the root method that collects real-world data from the IoT that contains practices, results or future occurrences.  

To deal with the huge amount of heterogeneous data generated by the Internet of Things (IoT), data processing makes use of a wide 

variety of models, and each which has its set of advantages.  The main models of predictive analytics and their connections with 

processing data from IoT systems are emphasized in this section. 

 

2.1 Traditional and Statistical Methods 

 

Traditional methods in IoT predictive analytics include: regression models, time series forecasting (e.g. ARima), rule-based 

approaches. They use historical data to predict trends or detect anomalies. The simplicity and computational efficiency of these 

methods make them ideal for small sensor networks, but they fail miserably when faced with complicated, real-time IoT data 

including high dimensions.  Predictive approaches of the Internet of Things are illustrated in Figure 1.  

 

 

Figure 1: Methods in IoT Data 

 

• Regression-Based Models: Regression models are most effectively utilized in scenarios where the dependent variable is 

continuous, comprising a wide range of possible values.  These kinds of data might include temperature readings or any 

number of other continuous variables.  Finding out how much of an effect the explanatory variable has on the dependent 

variable is the main goal of applying regression models in these environments. 

• Time-Series Forecasting: The most distinctive feature of time series data compared to other forms of information is the 

passage of time.  In addition to providing more information for their analysis, this attribute of theirs is a constraint and a 

structural component of the data gathering [12].  A collection of observations of a variable grouped into equally spaced 

time intervals is the basic definition of time series data, which can be any type of information shown as an ordered sequence. 

• Rule-Based and Heuristic Approaches: One of the most important uses of predictive modelling is in the identification 

of fraud.  While traditional rule-based systems do a good job, they can't always keep up with the changing patterns of fraud.  

In order to identify irregularities that could be signs of fraud, ML models, such as NN and SVM [13], can conduct real-

time analyses of massive datasets. 

 

2.2 Machine Learning-Based Predictive Analytics 

 

An IoT monitoring system that gathers data from the environment, including temperature, humidity, and accelerometers and 

gyroscopes, can be created in real time and have used various machine learning models to this processed data in order to make 

predictions.  By combining supervised and unsupervised learning methods, a hybrid machine learning algorithm outperforms its 

competitors.  A variety of hybrid methods are employed for the purpose of prediction [14].  An assortment of ML methods for IoT 

anomaly detection are illustrated in Figure 2. 

  



Nilesh Jain, Journal of Global Research in Mathematical Archives,  

 

© JGRMA 2025, All Rights Reserved   58 

 

Figure 2: Different Machine Learning Methods 

 

• Supervised Learning Models: Supervised learning is utilized on datasets with labeled outcomes, allowing the model to 

understand the relationship between inputs and final results, including the detection of outliers. It is one of the most widely 

used approaches in organizations and industries due to its effectiveness in classification and prediction tasks [15]. Common 

supervised learning algorithms include SVM, DT, NN, Bayesian Networks, and KNN. These algorithms, often referred to 

as discriminative models, leverage labeled instances to facilitate classification-based learning.  

• Unsupervised Learning Models: Anomaly detection using unsupervised learning has just begun to acquire relevance.  

Unlabeled data pattern learning is a machine learning technique that doesn't require explicit user guidance.  In order to 

discover hidden patterns or correlations, the algorithm investigates the data structure rather than receiving accurate outputs 

[16]. In this learning models like, K-means clustering, isolation forest etc. 

• Ensemble Methods: Several models, also referred to as weak classifiers, are trained using ensemble learning, a paradigm 

in machine learning.  In order to achieve better outcomes than any one algorithm could on its own, these models are 

integrated using various voting procedures and are based on features collected from multiple data projections[17]. 

 

2.3 Deep Learning Approaches for IoT Data 

 

Deep learning uses NN to efficiently identify abnormalities, discover intricate patterns, and evaluate IoT data [18].  DNNs are just 

as successful in anomaly identification in the Internet of Things as they are in domains like NLP and vision.  Figure 3 shows the 

various deep learning models used in IoT sensor networks to detect anomalies. 

 

 

Figure 3: Different Deep learning Approaches 
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• Recurrent Neural Networks: The quantity and quality of training data have a significant impact on hydrological 

prediction using standalone RNN, LSTM, or GRU models.   High-dimensional datasets with a wide range of hydrological 

and meteorological parameters make complex relationships easier for the model to understand [19].   The absence of easily 

accessible, continuous, high-quality data is a significant barrier to applying DL models for hydrological prediction. 

• Convolutional Neural Networks: A powerful family of DL models, CNNs are utilized in many different applications, 

such as object detection, bioinformatics, computer vision, picture classification, and speech recognition [14].  They have 

also successfully completed time series prediction tasks.  To extract features from data, feedforward neural networks called 

CNNs use convolutional layers.  To automate feature extraction and enable end-to-end training with minimal preprocessing, 

the CNN employs a two-stage design that integrates a classifier and a feature extractor. 

• Hybrid and Advanced Architectures: The benefits of GRU-LSTM layers for mimicking temporal relationships and 

CNNs for extracting spatial data are combined in the Hybrid CNN-GRU-LSTM model [20].   CNN efficiently captures 

spatial correlations among road segments by leveraging vehicle flow patterns in nearby areas, while the GRU and LSTM 

layers collaborate to learn both short-term fluctuations and long-term trends in traffic flow data. 

 

Table 1 compares predictive analytics approaches for IoT data, focusing on traditional and statistical, ML, and DL approaches. It 

summarises their methods, data requirements, advantages, limitations, and use cases, offering a clear overview to help choose 

appropriate approaches for IoT applications and data complexity. 

 

Table 1: Comparative Overview of Predictive Analytics Approaches in IoT Data 

 

Aspect Example Methods Data 

Requirement 

Advantages Limitations Use Cases 

Traditional 

& 

Statistical 

Regression (Linear, 

Multiple, Logistic), 

Time-Series 

(ARIMA, Holt-

Winters), Rule-

Based & Heuristic 

Approaches 

Historical or 

structured 

sensor data; 

predefined 

variables; 

smaller 

datasets 

Simple, 

computationally 

efficient, 

interpretable, good for 

basic trend prediction 

and threshold-based 

anomaly detection 

Limited scalability to 

high-

dimensional/streaming 

data; may not adapt to 

evolving or nonlinear 

patterns 

Predicting 

temperature, energy 

usage, humidity 

trends, fraud 

detection, simple 

anomaly detection in 

IoT 

Machine 

Learning-

Based 

Supervised (SVM, 

Decision Trees, 

Neural Networks), 

Unsupervised (K-

Means, Isolation 

Forest), Ensemble 

(Bagging, Boosting) 

Labeled 

(supervised) 

or unlabeled 

(unsupervised) 

IoT data 

Accurate, adaptable, 

detects complex 

patterns/anomalies, 

works for diverse IoT 

applications 

Resource-intensive, 

may overfit, complex 

implementation, 

requires data 

preprocessing 

Predictive 

maintenance, fault 

detection, 

classification, 

anomaly detection 

Deep 

Learning 

RNN, LSTM, GRU, 

CNN, Hybrid 

(CNN-GRU-LSTM) 

Large, high-

dimensional 

datasets 

Handles complex 

spatial-temporal 

patterns, automatic 

feature extraction, 

effective for multi-

sensor networks 

Computationally 

heavy, requires tuning, 

large labeled data 

needed 

IoT anomaly 

detection, real-time 

time-series 

forecasting, multi-

sensor analytics, 

complex pattern 

recognition 

 

3 ANOMALY DETECTION IN IOT 

 

A major concern in the Internet of Things (IoT) ecosystem is ensuring the reliability, efficacy and safety for all the connected 

devices.  Anomaly detection is becoming increasingly important as there is a huge amount of data coming from IoT devices.  

Businesses can gain important insights and improve their efficiency with operations if they use anomaly detection correctly [21]. It 

helps identify possible issues before they worsen.  When a data point does not match the expected behavior of a modeled system, it 

is considered an anomaly.  As seen in Figure 4, anomalies are occurrences that are highly unusual and do not conform to the norms 

or patterns seen in the dataset as a whole, in a particular context, or over a shorter period of time (such as a quarter or season) [22]. 
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Figure 4: Anomaly in Dataset 

 

3.1 Types of Anomalies 

 

The type of anomaly that is sought after is a crucial component of anomaly detection techniques.  The following three groups of 

anomalies can be identified, as illustrated in Figure 5: 

 

 

Figure 5: Different Types of Anomalies 

 

• Point Anomalies: Data may reveal point anomalies, sometimes called global anomalies.  Although point anomalies are 

the easiest to spot, a big challenge in this area is determining an appropriate measurement of the object's divergence from 

other objects.  In a typical network, each hub needs at least two neighbors that are connected to it [23].  Group V2's hubs 

form this type of network, which is typical behavior; group V1, on the other hand, has isolated nodes. 

• Contextual Anomalies: This kind of strange behavior happens when something that would be considered unusual in one 

setting isn't in another.  There are two categories of characteristics associated with contextual anomalies: contextual and 

behavioural.  Location datasets that include longitude, spatial, and latitude all have unique contextual features [24].  The 

contextual feature of time in time-series data also shows the arrangement's position for each instance.  The second trait is 

seen as a trait of behavior. 

• Collective Anomalies: These happen when a large number of continuous data points exhibit, in unison, aberrant behavior 

that contradicts the behavior of other points.   Collective anomalies in database systems are a series of seemingly legitimate 

database operations that, when executed concurrently, reveal a system breakdown or an attack [25].   Common methods 

for spotting group outliers include clustering and sequence analysis, such DBSCAN and sequence-based neural networks. 

 

3.2 Anomaly Detection using Deep Learning 

 

Deep learning models like autoencoders, GANs, and transformers can automatically learn patterns in IoT data and detect deviations 

in real time. They handle complex, high-dimensional sensor streams better than traditional methods. These are some of the 

approaches that help in improving the scalability, accuracy and adaptability for detecting anomalies in IoT networks. 

 

• Autoencoder-Based Anomaly Detection: One type of neural network that mimics input from output is called an 

autoencoder.   The autoencoder uses the thump rule to compress the input into latent space and reconstruct the output [26].  

One type of unsupervised machine learning is the auto encoder, sometimes referred to as a feature extraction algorithm.  

Text, voice, images and videos are just some of the many types of input that autoencoder can handle. 

• Transformer-Based Anomaly Detection: Anomaly detection and some other time series related tasks have witnessed 

growth in the use of transformers due to efficiency in handling big data and complex dependencies.  There are a number 
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of models that are based on Transformers; these models vary in their strengths in the case of anomaly detection, important 

contributions and some others [27].  When it comes to time series data for example, Anomaly Transformer is all about 

gathering temporal relationships and distinguishing between the normal and the unusual.  By comparing the expected and 

actual patterns within the data sequences, it combines attention techniques in order to efficiently reveal the abnormalities 

in IoT log data. 

• GAN-Based Anomaly Detection: A common deep anomaly detection approach is GAN-based anomaly detection, which 

is gaining popularity rapidly [28].  In general, the goal of this method is to train a generative network's latent feature space 

𝐺 such that it accurately represents the data's inherent normalcy.  The anomaly score is a residual that exists between the 

actual occurrence and the created one. 

 

4 CHALLENGES OF IOT ANOMALY DETECTION 

 

The machine learning model may need to be retrained or updated on a frequent basis due to potential changes in data patterns and 

relationships brought about by the ever-changing nature of the IoT.  The scarcity of labelled training data is another obstacle to 

anomaly detection on the IoT. There are several challenges in deep learning to find anomalies: 

 

• High dimensionality: There are usually a lot of sensors, devices, and data sources that contribute to the high dimensionality 

of IoT data.   Because algorithms must deal with a huge number of features and capture intricate correlations between them, 

anomaly detection becomes more challenging due to this high dimensionality.  To overcome this obstacle, dimensionality 

reduction techniques might be necessary. 

• Scalability: The IoT creates real-time huge data sets.  Anomaly detection systems need to be scalable in order to deal with 

the rapid and massive amounts of data [29].  Fast, efficient algorithms and storage-and processing-capable infrastructure 

are necessities for real-time processing of data sets of this magnitude. 

• Context Information:  The dispersed nature of IoT devices makes them ideal for gathering context data needed for 

detecting anomalies.  On the other hand, in large IoT deployments, where some IoT devices are mobile, it is sometimes 

unnecessarily hard to capture the time-related input b1 in relation to spatial contexts and input bn [30].  In other words, the 

advantage of anomaly detection systems is that they are in a position to add information, but getting the right context right 

can make them more complex. 

• Profiling Normal Behaviours: Defining typical actions is tough, but having enough data about them is essential for an 

anomaly detection system to work.  Since they don't occur very frequently, sometimes the abnormal behaviors would be 

lumped in with normal behaviors.  For widely dispersed IoT devices in particular, supervised learning is not an option due 

to a dearth of datasets capturing both typical and out-of-the-ordinary data from the IoT. 

 

5 LITERATURE REVIEW 

 

This review summarises the progress in IoT anomaly detection in terms of accuracy, robustness, and scalability. Approaches like 

self-attention mechanism, GAN-based model, edge-enabled framework and hybrid approaches reflect the advancement towards 

more reliable and adaptive IoT systems. 

 

Yan et al. (2025) presented an IoT sensor data correlation and anomaly detection model based on a self-attention mechanism, which 

is innovative on the basis of existing time series analysis and deep learning models. The model combines a multi-layer self-attention-

based architecture and a hybrid encoder-decoder architecture, which can extract temporal and spatial correlations in sensor data in 

parallel. They proposed a new type of attention scoring function which can handle irregularities in sensor data, improving on the 

traditional attention mechanism to better deal with missing values and sensor noise. The model further improves this aspect by 

including a dynamic attention mechanism, which helps to focus on the most relevant sensor data sequences to correlate data and 

separate out the anomalous patterns more effectively [31]. 

 

Gutierrez-Rojas et al. (2025) presented a model for detecting anomalies in IoT-enabled CPSs via WSNs. The model consists of 

three main blocks of data in the cyber layer: sensor-based data acquisition, data fusion to transform raw data into information, and 

analytics for decision-making. The logic behind these blocks shows the importance of anomaly detection and is illustrated by three 

use cases, i.e. the selection of faults in power grids, the detection of anomalies in an industrial chemical process and the prediction 

of the carbon dioxide level in a room [32]. 

 

Li et al. (2024) introduced UatGAN, a GAN-based technique for detecting anomalies in time-series signals from IoT devices without 

manual supervision. The method combines autoencoders (AEs) and GANs, using the encoderdecoder structure of AE to learn 

compressed representations of input data, and enhances sensitivity to anomalous inputs through adversarial training of GANs. Given 

time correlation, the dynamic time warping (DTW) algorithm is used to compute reconstruction errors, and a new anomaly diagnosis 

strategy is proposed. Experiments conducted on public datasets demonstrate that their method detects anomalies more accurately 

than baseline methods [33]. 

 

Shahnejat Bushehri et al. (2024) developed a system to analyse data transmissions to identify IoT nodes experiencing energy 

anomalies.  They make use of a publicly available dataset comprising data on energy and link quality in peer-to-peer IoT 

communication.  To begin, their system examines data transfer for IoT transceivers using linear regression to determine the most 
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important characteristics.  At a later stage, the gradient flow is adjusted using a deep neural network in order to highlight the most 

important properties.  This adjustment reduces the corresponding reconstruction error, thereby increasing the accuracy of anomaly 

identification.  The last piece of information that nodes can use to improve their transmission configuration for future communication 

is the energy stabilization feedback [34]. 

 

Zerkouk, Mihoubi and Chikhaoui (2023) introduced DGM-IF, an innovative unsupervised approach of anomaly detection for IoT 

and wireless sensor networks.  Anomaly detection and resilient normal data representation are attained by the combination of deep 

generative models and Isolation Forest technique in DGM-IF.  Using the learnt distribution as a basis, the model generates synthetic 

data and the Isolation Forest is used to isolate the outliers.  The proposed approach is evaluated on real-world datasets and compared 

with state-of-the-art methods to demonstrate its effectiveness in detecting outliers.  The DGM-IF method can detect possible threats 

and attacks, which might greatly improve the security and dependability of IoT systems and wireless sensor networks [35]. 

 

Li et al., (2022) introduced ADRIoT, a framework for detecting anomalies in IoT networks that makes use of edge computing to 

reveal possible dangers.  Anomaly detectors, a traffic preprocessor, and a traffic capturer are the components of an anomaly detection 

module that an edge can employ. These modules are further customized to each device type.  An LSTM autoencoder builds each 

detector unsupervised, so it can handle new zero-day attacks as they emerge and doesn't require labelled attack data.  The edge 

retrieve the matching detector from the cloud and run it locally whenever a device connects to it.  Another issue is that deploying 

such a detection module is hindered by the resource constraint of a single edge device, such as a home router [36]. 

 

Qiao, Zhang and Zhang (2022) suggested a GAN-based model for Internet of Things anomaly detection that can effectively learn 

data patterns unsupervisedly, even when faced with contaminated training data.  To facilitate effective representation mapping, the 

new model incorporates the Bidirectional GAN (BiGAN) architecture, and to eliminate training-set noise, it uses the Robust 

Principal Component Analysis (RPCA) method.  The training approach incorporates a proximal method and Alternating Direction 

Method of Multiplier (ADMM), and a new objective function and score function are meticulously constructed to enhance its 

performance [37]. 

 

The recent IoT anomaly detection studies are summarized in Table 2 and they have shown improvements in accuracy, robustness 

and adaptability. The main issues are scalability, efficiency, and generalization, and one of the directions of future work should be 

lightweight models and deploying at the moment. 

 

Table 2: Summary of Previous Study on IoT Anomaly Detection Approaches 

 

Reference Study On Approach Key Findings Challenges / 

Limitations 

Future Directions 

Yan et al., 

2025 

IoT sensor 

data 

correlation & 

anomaly 

detection 

Self-attention 

mechanism with 

hybrid encoder-

decoder 

Captures temporal & 

spatial correlations, 

handles missing values 

& sensor noise using 

dynamic attention 

High computational 

cost for multi-layer 

self-attention; 

scalability issues for 

large IoT systems 

Optimize lightweight 

attention 

mechanisms; extend 

to real-time IoT 

monitoring 

Gutierrez-

Rojas et al., 

2025 

IoT-enabled 

industrial CPS 

anomaly 

detection 

Cyber-layer 

model with data 

acquisition, 

fusion, and 

analytics 

Demonstrated 

effectiveness in power 

grids, chemical 

processes, CO₂ 

prediction 

Dependency on 

wireless sensor 

reliability; domain-

specific model tuning 

Apply to broader 

CPS domains; 

enhance adaptability 

for heterogeneous 

IoT systems 

Li et al., 2024 IoT time 

series 

anomaly 

detection 

UatGAN (AE + 

GAN + DTW) 

Improved anomaly 

detection accuracy 

over baselines; novel 

diagnosis strategy 

GAN training 

instability; 

computationally heavy 

DTW calculations 

Develop more stable 

GAN architectures; 

apply to diverse IoT 

datasets 

Shahnejat 

Bushehri et 

al., 2024 

Energy 

anomaly 

detection in 

IoT nodes 

Linear regression 

+ deep neural 

network with 

gradient 

modification 

Identifies dominant 

features; improves 

anomaly detection by 

reducing 

reconstruction error 

Limited to energy & 

link quality datasets; 

model generalizability 

not proven 

Extend framework to 

multiple IoT 

domains; real-world 

deployment testing 

Zerkouk, 

Mihoubi & 

Chikhaoui, 

2023 

WSN & IoT 

anomaly 

detection 

Deep Generative 

Model + Isolation 

Forest (DGM-IF) 

Learns robust normal 

data representation; 

effective anomaly 

detection in real 

datasets 

Synthetic data quality 

affects performance; 

limited evaluation 

scope 

Broader 

benchmarking; 

improve synthetic 

data generation 

quality 

Li et al., 2022 IoT edge-

based 

anomaly 

detection 

ADRIoT 

framework with 

LSTM 

autoencoder 

detectors 

Detects zero-day 

attacks without labeled 

data; edge-cloud 

integration 

Resource constraints of 

edge devices; 

scalability challenges 

Optimize lightweight 

detectors; explore 

federated learning for 

distributed IoT 
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Qiao, Zhang 

& Zhang, 

2022 

IoT anomaly 

detection with 

noisy data 

BiGAN + RPCA 

+ ADMM 

Handles noisy data; 

robust unsupervised 

anomaly detection 

Training complexity 

due to multiple 

integrated components 

Simplify training 

pipeline; expand 

robustness to 

different IoT noise 

patterns 

 

6 CONCLUSION AND FUTURE WORK 

 

The heterogeneity, large scale, and limited resources of the IoT ecosystem have hindered cyberattack detection and prevention, as 

this review demonstrates, and have also highlighted how deep learning can support real-time anomaly detection and predictive 

analytics in IoT sensor networks.  DL models are more effective than traditional statistical and ML models when processing large-

scale, high-dimensional, and heterogeneous IoT data. Autoencoders, GANs and transformers are some of the techniques that offer 

adaptive and scalable methods to detect subtle anomalies or predict system behavior in a variety of fields, including healthcare, 

smart infrastructure, industrial internet of things, and environmental systems. Deep models can vastly improve system durability, 

efficiency, and decision-making accuracy by automatically extracting hierarchical features. Nevertheless, there are various 

limitations, including the imbalance of the data, high computational and the lack of interpretability, and which are limiting the 

scaling of this technology in resource-constrained IoT settings. In general, deep learning-based solutions can be viewed as a viable 

direction of creating strong and intelligent IoT systems, leading to predictive, proactive, and secure IoT systems. 

 

Future studies should focus on developing light and energy-efficient deep learning models capable of running on edge and fog 

computing frameworks to eliminate reliance on cloud systems. Federated and distributed learning advances are potentially useful to 

assure privacy and provide collaborative anomaly detection across the IoT devices. Also, predictive analytics and anomaly detection 

in next-generation IoT networks will be further enhanced by adaptive models capable of adapting to changing IoT data patterns, as 

well as integration of reinforcement learning to make decisions in real-time. 
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