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Abstract: Network security has become a key issue in cybersecurity, and this has forced organizations to protect their valuable
resources and sensitive information against dynamic cyber threats. This literature review explains the field's transformation by
examining research trends, methodologies, challenges, and achievements that have led to the development of anomaly detection
systems. The digital age is evolving rapidly, and one solution to the growing, increasingly advanced cybercrimes is the use of
anomaly detection to improve network security. The paper proposes a CNN-based intrusion detection model using the UNSW-
NB15 dataset. The used methodology includes a large portion of preprocessing, which includes data cleaning, normalization of Z-
scores, Min-max scaling, the selection of features based on the Select-K-Best tool, and balancing of classes by using the SMOTE
technique to preserve the quality of data and model strength. The model was trained and evaluated based on an 80/20-percent
dataset division, accuracy (ACC), precision (PRE), recall (REC), Fl-score (F1), confusion matrix, and ROC-AUC. The
experimental results have demonstrated that the CNN model had an accuracy of 98.73% and precision of 96.61% and recall of
96.44, and F1-score of 93.98 with an ROC-AUC of 0.98 and hence good discriminative performance. The proposed CNN model
was more reliable and effective than LSTM, Extreme Trees (ET), and Logistic Regression (LR) for detecting network security
anomalies.

Keywords: Intrusion Detection System (IDS), Network Security, UNSW-NB15 Dataset, Convolutional Neural Network (CNN),
Machine Learning.

1 INTRODUCTION

One of the primary considerations for information systems in the present digital era is the integrity and confidentiality of information,
particularly network security. Decades of augmenting volumes and prevalence of extremely advanced attacks require an effective
approach to detect and avert a menace prior to the system being breached [1] [2]. Determining the presence of anomalies is one of
the most significant issues in network security because they are considered abnormal behaviors and therefore indicate the possibility
of an attack. The former techniques for detecting anomalies relied on manually defined rules that were unable to keep pace with
dynamically changing attack patterns. Therefore, the creation of additional auto-adaptive systems of network anomaly detection is
of paramount importance. Machine learning can offer an effective solution for anomaly detection, as in this case, no predefined
rules are required to implement the strategy. The main reason for performing the detection at a higher level is the determination of
the best algorithm and evaluation method, though. In this regard, NB algorithms and cross-validation as an evaluation method were
selected because of their ability to handle large volumes of data and to forecast ACC in previous studies.

In the current context, cybersecurity is a worldwide requirement, which is forced by the fact that the protection of systems against
undesired, unauthorized, and unexpected interference is of paramount importance [3]. Data breaches, theft of sensitive information,
and other risks to system integrity and performance are all examples of this kind of interference. For systems to function smoothly,
sensitive data to remain secure, and user confidence to be maintained, prevention against these risks is essential. IDS has long been
used as a stronghold of the perimeter defense mechanism.

Anomaly prediction enables proactive prevention of future mistakes and protects sensitive data and critical infrastructure against
potential attacks [4]. There are always new obstacles for IT professionals to overcome; study sought to fill that requirement by
developing a reliable technique for detecting anomalies in network infrastructures. To maintain and secure network systems, it is
essential to detect anomalies. With the ever-changing nature of the Internet and other communication technologies, IT experts are
constantly up against new problems. Finding anomalies and responding appropriately while avoiding collateral harm requires the
development of sophisticated anomaly-detection systems. Anomalies can manifest in many forms, including irregular traffic
patterns, network outages, or unauthorized access. It is common for current systems to fail to classify network data, even though
they have obtained good theoretical results [5] [6]. The purpose of this research was to develop an anomaly detection system that is
sensitive to network conditions, traffic patterns, and dataset properties. The goal was to create a prototype that might be used in
future security systems. This project focuses on a data application with built-in autonomous anomaly detection algorithms, including
its deployment and user interface components.
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A new approach to detecting anomalies in network data has emerged with the advent of ML. MLs categorization method can
discover traffic anomalies. However, conventional machine learning models aren't very good at handling the exponential growth of
network traffic in this big data era. Their performance is subpar when dealing with the multi-classification challenge, and their
classification ACC is below expectations. So, feature combination selection is now critical for these models [7]. To address partial
information loss in network models caused by traffic clipping, this paper introduces a model for network traffic anomaly detection
using chaotic neural networks, preprocesses data for multi-information fusion based on network traffic characteristics, and trains a
multi-task learning NN classifier.

1.1 Motivation and Contribution of Study

Improving network security through more efficient anomaly-detection technologies is an immediate necessity given the proliferation
of networked systems and the sophistication of cyberattacks. Protecting sensitive data and critical infrastructure can be challenging
with traditional rule-based intrusion detection systems, which are limited in adaptability and unable to keep pace with evolving
attack techniques. A potential substitute is anomaly detection methods based on ML, which can learn from data trends and spot
outliers without depending on rigid rules. However, challenges such as feature selection, scalability in big data environments, and
performance in multi-class scenarios still persist, making it necessary to evaluate and compare different ML approaches[8].
Therefore, the motivation for this study is to conduct a comprehensive performance evaluation of ML-based anomaly detection
techniques to identify effective solutions that enhance the reliability, ACC, and robustness of modern network security systems.

e Introduces a comprehensive anomaly detection framework using the UNSW-NBI15 dataset, covering data cleaning,
normalization, balancing, and feature selection.

e Employs SMOTE to effectively address severe class imbalance, improving detection of minority (non-attack) instances.

e Reduces dimensionality and improves model efficiency by using Select-K-Best feature selection with an ANOVA F-test
to keep the 30 most relevant features.

e Implements CNN for robust classification of normal and attack traffic, leveraging optimal hyperplane separation.

e Performs a thorough evaluation of the model's classification efficacy by utilising confusion matrix-based measures (ACC,
PRE, REC, F1, and ROC-AUC).

1.2 Justification and Novelty

This study is unique because it improves network security anomaly detection by combining a CNN-based framework with robust
preprocessing. Unlike prior studies that often rely on raw or minimally processed data, this approach systematically applies
correlation analysis, Select-K-Best feature selection, Z-score standardization, Min-Max normalization, and SMOTE-based class
balancing to address issues of dimensionality, feature redundancy, and severe class imbalance. This ensures not only higher detection
ACC but also better generalization and stability across evaluation metrics. The suggested CNN model is shown to be more efficient
and reliable than sophisticated baselines like LSTM, ET, and LR in the comparison study. The study presents an improved, scalable,
and more interpretable method for intrusion detection in complex, diverse network data by merging CNNs' margin-maximizing
classification with robust preprocessing.

1.3 Structure of Paper

The following is the outline of the paper: Review of the literature on anomaly detection was covered in Section 2. The methodology,
including the dataset, preprocessing, and proposed CNN architecture, is detailed in Section 3. Section 4 details the outcomes of the
experiments, Section 5 compares them to baseline models, and Section 6 wraps up by discussing the potential future applications.

2 LITERATURE REVIEW

This section presents a study that uses various ML-based methods to detect network security anomalies. Table 1 summarizes the
studies' findings.

Tiwari and Roy ef al. (2025) presented stacking-based machine learning approach for identifying network traffic anomalies in
embedded devices is proposed. It uses a dataset that includes regular and unusual network traffic patterns. To improve detection,
the proposed model uses stacking ensemble learning with multiple base classifiers. RF, XGBoost and SGD are selected as basic
learners. These are selected because it helps distinguish harmless and benevolent network traffic. By composing such basic learners,
a meta-classifier is able to improve the final predictions adding information in the form of the collective output to these basic
learners. The stacking ensemble method identifies network anomalies with 94.4% PRE, which is superior than the individual
models[9].

Ness et al. (2025) Presented a diverse array of machine learning techniques for the detection of anomalies in network traffic and
elucidated the manner in which these models address issues such as feature complexity and class imbalance. Classification using
support vector machines (SVMs), XGBoost, LightGBM, NB, and Isolation Forest were tested. The study uses a range of ACC, F1,
and REC metrics to assess the efficacy of supervised and unsupervised processes, based on extensive research. Isolation Forest
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suffers from subpar ACC, whereas XGBoost and LightGBM achieved excellent results, with near-perfect ACC in training (1.0) and
robust ACC at test (0.85). The paper has also highlighted the strengths and weaknesses of each model, which is vital for applying
the models to draw conclusions in the network anomaly detection process [10].

Sharma et al. (2024) reported the efficiency of different ML algorithms for detecting these payloads in the system. There are three
datasets that are used in the experiments: Hardware in Loop HAI dataset, Gas Pipeline dataset, and ICS cyber-attack dataset. The
experimental procedures are performed using Python and a high-performance GPU. Such a cumulative analysis of these experiments
reveals that CNN-Dense net and RF algorithms produce the best results with regards to the ACC, PRE, REC, and ROC Curve in all
the datasets considered. It should be noted that other algorithms do not differ much when compared to CNN-Dense net and RF. ML
algorithm must therefore be selected basing on the data produced by the application system [11].

N and Bhuavneswari ef al. (2023) The CTU-IoT dataset are a premier loT-based home automation dataset, and the primary objective
of the research was to identify outliers using ML approaches. Using a basic imputer method, the solution reads packet capture (pcap)
data from comma-separated value (.csv) files and removes outliers. Then, the Isolation Forest technique is used to label the dataset
as normal or abnormal. To address class imbalance, a balanced dataset can be built using oversampling methods such as SMOTE
and Borderline-SMOTE. This work includes all three datasets, the original imbalanced, the SMOTE balanced or the Borderline-
SMOTE. These datasets are used to evaluate the performance of several ML algorithms, like SVM, NB, DT, RF among others; the
key measures of their performance, like ACC, PRE, REC, F1, and computation time are used [12].

Gulhare ef al. (2022) proposed a group ML-based anomaly detection algorithm for IoT devices using the Mean-Shift and Local
Outlier Factor (LOF) algorithms. The model is evaluated using datasets that are based on the UNSW-NB15 IoT network.
Categorization of common or abnormal actions is performed using the ensemble ML method, whereas clustering is performed using
the Mean-Shift clustering strategy and OLOF. The suggested model is tested and compared using precision (P), recall (R), accuracy
(ACC) and F1-score [13].

Singh and Srivastav ef al. (2021). The IDS can identify and log different types of attacks —known, unknown, and zero-day—using
unsupervised machine learning. The device was based on the OCSVM, and active learning was implemented to identify potential
risks before they occurred. To this end, we compared the framework's performance on the UNSW-NB15 and KDD Cup 99 datasets
with its performance on the CIC-IDS2017 dataset. According to the outcomes, this framework appears to be doing better than the
competition [14].

A number of studies have investigated anomaly detection in IoT and network data using various ensemble and machine learning
approaches, yet substantial knowledge gaps remain. Existing approaches often face challenges such as class imbalance, overfitting
to specific datasets, high computational complexity, and limited generalizability across heterogeneous IoT environments. While
methods such as stacking ensembles, CNN-DenseNet, and LightGBM demonstrate strong performance, their reliance on specific
datasets (e.g., CTU-IoT, UNSW-NB15, CIC-IDS2017) limits scalability for real-time applications. Moreover, many models are
evaluated in offline or controlled environments, leaving a gap in practical deployment under dynamic network conditions. Therefore,
there is a need for lightweight, adaptive, and hybrid frameworks that integrate supervised and unsupervised techniques, robustly
address imbalance, and ensure real-time detection of evolving and zero-day attacks in embedded and IoT systems.

Table 1: Comparative Analysis of Anomaly Detection Techniques in Network Security

Author Methodology Data Key Findings Limitation Future Work

Roy, Tiwari | Stacking ensemble | IoT network | Stacking ensemble | Limited to selected | Explore deep

and Roy | with RF, XGBoost, | traffic  dataset | achieved = 94.4% | base classifiers, may | learning

(2025) and SGD as base | (regular & | ACC, not generalize well | ensembles and
learners, meta- | anomalous outperforming to unseen traffic | real-time anomaly
classifier for | patterns) individual models | patterns detection
refinement

Ness et al. | Comparison of | Network LightGBM Possible overfitting | Hybrid models

(2025) supervised & | anomaly dataset | outperformed in LightGBM, | combining
unsupervised ML | (unspecified) Isolation  Forest, | dataset imbalance | supervised &
models (Isolation with a training | issues unsupervised
Forest, Naive Bayes, ACC of 1.0 and a learning
XGBoost, LightGBM, test ACC of 0.85.
SVM)

Sharma, Bajaj | CNN-DenseNet and | HAI dataset, | CNN-DenseNet High computational | Expand

and Sahu | Random Forest | Gas Pipeline | and RF provided | cost (GPU required), | experiments with

(2024) evaluated  alongside | dataset, ICS | highest ACC, PRE, | dataset-specific lightweight DL
other ML models cyber-attack REC, ROC across | results models for

dataset datasets embedded IoT

© JGRMA 2025, All Rights Reserved 13



Manish Jain, Journal of Global Research in Mathematical Archives,

N and | Isolation Forest + data | CTU-IoT Balanced datasets | Class imbalance | Extend framework
Bhuavneswari | balancing (SMOTE, | dataset (IoT | improved results; | issue still partially | to real-time IoT
(2023) Borderline-SMOTE) + | home RF and SVM | persists; traffic with
ML models (SVM, | automation) performed best | computation  time | streaming ML
NB, DT, RF) with oversampling | higher after
oversampling
Gulhare, Use of Mean-Shift | UNSW-NBI15 The model | Only available on | Extend to multi-
Badholia and | clustering in  an | IoT dataset performed above | the UNSW-NBI1S5 | [oT datasets and
Sharma (2022) | ensemble setting along average in all four | dataset; settings | optimize  cluster
with a local outlier metrics: F1, ACC, | determine clustering | selection
factor (LOF) PRE, and REC. performance.
Singh and | One-Class SVM with | CIC-IDS2017, Framework Computational Apply deep one-
Srivastav Active Learning for | UNSW-NBIS, effectively detected | complexity and | class learning and
(2021) unsupervised anomaly | KDD Cup’99 known, unknown, | scalability concerns | adaptive active
detection and zero-day learning
attacks; better than
baselines
3 METHODOLOGY

Utilizing the UNSW-NBI15 dataset, a methodical procedure for anomaly detection in network security is established through data
preparation, feature optimization, and model validation. Raw data traffic is initially cleaned, normalized, and standardized to provide
consistency and better predictive power. To correct severe class imbalance between the attack and non-attack records, the SMOTE
algorithm is used, and to reduce the number of features, Select-K-best feature selection is applied, and 30 most relevant attributes
are retained. This data is subsequently partitioned into a state of 80/20 to guarantee an effective training and an objective judgment.
A CNN is taught to create an ideal hyperplane that can distinguish between benign and malicious traffic, and the models'
performance is assessed by utilizing common metrics like as ACC, PRE, REC, and F1, which are derived from the confusion matrix.
Also, ROC-AUC analysis is a good way to gauge the model's discriminatory power because it captures the trade-off between
specificity and sensitivity to a sufficient degree. Such extensive approach provides the balance in data representation, dimensionality
reduction and the rigor of performance evaluation to the intrusion detection research best practices.

UNSW-NB15
dataset

¥

¥

Data cleaning

e  Data balancing with SMOTE
—p ¢ Feature selection using Select-
K-Best

\

|

Data Normalization with

Confusion matrix-
accuracy, precision,
recall, F1 score and
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Y

Results

Min-Max Scaler

Data splitting

A
[ |

[ Training I Testing ]
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{ J
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Figure 1: Flowchart of Anomaly Detection Techniques in Network Security

The description of each step is presented in the following sections, which also appear in methodology and proposed flowchart:

3.1 Data Collection

The Australian Centre for Cyber Security (ACCS) at UNSW used the Perfect-Storm program to generate a database called UNSW-
NBIS. It contains 100 GB of TCP-Dump-captured raw network data. The result is 2,540,044 records that include varied protocols
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including TCP, UDP, ICMP, etc. Separate training and testing sets contain 37,000 normal records and 56,000 normal records,
respectively, coupled with a variety of attack occurrences, making the dataset ideal for study on intrusion detection.
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Figure 2: Correlation Heatmap

The pairwise correlation coefficients between several dataset features are shown in Figure 2. Color saturation and hue reveal the
nature and direction of the relationship. If two variables are highly correlated, then an increase in one cause an increase in the other;
conversely, a drop in one cause an increase in the other; and a strong positive correlation shown by red. The diagonal line is entirely
red, as each variable is perfectly correlated with itself. The symmetrical nature of the heatmap reflects that the correlation between
variable A and B is the same as between B and A. Notably, the 'label' feature, which likely represents the class (e.g., attack vs. non-
attack), shows varying degrees of correlation with other features, such as 'smean’, 'dmean’, and 'ct_srv_dst Itm'. The detection of
strongly-correlated features is a key step in data analysis, which can be used to select better features to achieve better performance
and to avoid multicollinearity between features.

3.2 Data Preprocessing

Data processing is a vital step towards using the data effectively to enhance the model ACC. It consists of error cleaning, dealing
with missing values, standardization of features (z-score normalization), values normalization (Min-Max scaling), class balancing
(e.g. SMOTE). These make sure that data is of quality, contribute equally in feature provision, and is less biased, producing more
sound predictive models.

3.3 Data Cleaning

The primary goal of the process is to improve data quality by identifying errors and inconsistencies. Common data cleanup activities
include addressing incomplete data, deleting duplicates, and correcting errors and irrelevant data records.

3.4 Data balancing with SMOTE

The SMOTE is used to eliminate overfitting in the study. As an oversampling technique, SMOTE generates synthetic samples from
minority populations.

The bar graph shows the counts of two types: Non-Attack and Attack. The number of instances per class is depicted by the y-axis.
A count of about 58,000 is shown in the bar labelled non-attack as opposed to the significantly high count of 120,000 shown in the
bar labelled Attack. This stark difference in the counts reflects a high degree of class imbalance the "Attack" class being the majority
class and the "non-attack" class the minority class. This imbalance is a typical issue of machine learning data and may cause
discrimination of a model towards the majority of the data and have low efficiency on the minority data. Such visualization thus
makes the balancing techniques absolutely essential prior to training a model.
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Figure 3: Count plot for data distribution

3.5 Feature selection using Select-K-Best

Reduce dimensionality with Select-K-Best transformation based on ANOVA F-test to improve model performance. It gives each
feature a score based on how well it correlates with the target variable. Consideration of the characteristic for the target variable
generally leads to a higher score. By setting the value k to 30, ensured that just the 30 most notable features were kept. The names
of the selected features were then extracted from the original dataset, excluding the target variable, using get support. Additionally,
feature importance scores are analyzed to validate the selected features are shows in figure 4.

Feature

: ct
iS_sm_ips_ports

Feature Importance Scores

(=]
~n
o
o
(=]
(=]

40000

60000

20000 100000 120000 140000

Score

160000

Figure 4: Feature importance

Figure 4 shows the weights assigned to different features in an ML model, most likely utilized for a classification job. Each
horizontal bar's length corresponds to a score, illustrating how the feature affects the model's predictive capacity. The feature 'rate’
stands out with its impressive score, indicating its prominence as the model's decision-making variable. The properties
'ct_state ttl''state’, 'id', and 'ct_dst Itm' are also highly significant. In contrast, features like 'spkts', 'dpkts', 'sload’, 'dload', and
'is_sm_ips_ports' have relatively low scores, indicating they are less relevant for the model's predictions. The determination of
feature importance is essential in the application of machine learning because it can inform activities related to feature engineering,
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improve interpretability (of the model), and potentially simplify the model, potentially reducing dimensionality and the
computational burden of the model.

3.6 Data Standardization with Z-Score

Standardization (or z-scoring, also called z-scale or z-normalization) is an important technique of feature scaling. It is the act of
taking the mean of each of the features and dividing it by the standard deviations of that features value. This methodology is
applicable where the input data displays an extensive gap in the feature values. Each characteristic has a consistent scale after
standardization, with a mean (u) of 0 and a standard deviation (o) of 1. The predictive models' ACC is greatly enhanced by this
method. Find the Z-score normalization equation (Equation 1) up there in the mathematical formulation.

Xnew = % (1)

The feature's initial value is denoted by X, its standardized form by x,,,,, the mean by p, and the standard deviation by c.
3.7 Data Normalization with Min-Max Scaler

Data features can be scaled to a common value by normalization, a scaling approach. In UNSW-NB 15, the continuous feature's
minimum and maximum value ranges are drastically different. Each feature's value range is uniformly linearly mapped in the range
of 0 and 1, and the mathematical processing is made easier with the use of a Min-Max scaling method. It is possible to describe the
Min-Max scaling technique as

X—Xmin

)

Xsear = X
max—Xmin

Scaling data points are represented by X,.,;, while the minimum and maximum values of the input feature X are X,,;,, and X,,qx,
respectively.

3.8 Data balancing After SMOTE

A small number of minority-class points inside the domain of majority-class points causes the formation of bridges between those
locations. An improved version of SMOTE called Borderline SMOTE can fix this issue with SMOTE. Because of the modest
number of over-sampled cases along the orderline, Borderline-SMOTE is able to generate synthetic data within the class choice
boundary. Classification tasks necessitate that most techniques learn the borderline for each class during training so that they can
do better.

After Balancing

40000

30000 +

Count

20000 +

10000 +

Mon-Attack Attack
Class

Figure 5: Count Plot for data distribution after Balancing

Figure 5 illustrates the distribution of the dataset's classes following the application of a balancing technique. Unlike the previous,
imbalanced distribution, this chart shows that the counts for the "Non-Attack" and "Attack" classes are now nearly equal. The count
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for the "non-attack" class is approximately 38,000, while the "Attack" class has a count of about 44,000. This near-equal distribution
suggests that an oversampling technique, such as SMOTE, or an undersampling method was used to adjust the class frequencies.
Reducing the likelihood of a machine learning model being biassed towards the initial majority class through the creation of a more
balanced dataset can increase performance and generalization, especially when it comes to detecting the minority class.

3.9 Data Splitting

The training set encompasses 80% of the data utilized for model training in an 80/20 split, whereas the testing set contains 20% of
the data retained for testing. This ensures sufficient data for learning while retaining a portion for unbiased performance evaluation.

3.10 CNN Model

CNN s are the image algorithms that are used the most. picture classification, picture recognition, object detection, and other tasks
often use convolutional neural networks [15]. Classifying pictures is the DL job where CNN are used the most. Also, CNN is an
image dataset with a lot of dimensions; each image has many thousands of pixels, which makes it difficult and big. CNN can figure
out the topological features of an image because it is a feed-forward network. CNNs are models that use multiple layers of
perceptron’s. CNNs use three different layers that are more like neural networks: convolutional, pooling, and fully linked. Each
layer has its own job to do. Features extracted from the convolutional layer have made use of it. The current entry's category is
determined by the pulled function in the fully linked layer. A pooling layer's function is to decrease the quantity of feature mappings
and network parameters.

e Convolutional Layer: The feature maps of convolutional layers are built by applying the local connection concept and the
weight distribution theory. Through the utilization of location-independent local picture statistics and the highly-connected
local pixel neighborhoods, as well as weight distribution goals, the number of parameters required is reduced.

e Pooling layer: The pooling layer combines the characteristics of two or more conceptually related convolutional layers by
use of a subsampling procedure. A pooling layer entity map (convolutional) unit takes a local patch as input and uses it to
get the maximum or average patch value at the output. Later on, with a smaller representation and better robustness, the
number of parameters needed drops.

o Fully connected layer: The classical multilayer perceptron neural network has fully connected units in every other layer.

A CNN's efficiency and efficacy are greatly affected by how its physical area is organised. Specific activities can be accomplished
more swiftly and accurately depending on the construction method, materials used, and arrangement of the layers.

3.11 Performance Matrix

One important method for testing the efficacy of ML classification is the Confusion Matrix. Tables showing expected and actual
findings can take one of four forms: TP, FN, or TN. The ACC, PRE, REC, and F1 metrics are highly dependent on this matrix.

Accuracy: One of the performance metrics is ACC, which measures how many out of a total number of observations were correctly
predicted. Equation (3).

TP+TN

Accuracy = ———
y TP+FP+FN+TN

3)

Precision: The predictive ACC is the ratio of the expected number of positive values to the number of positive values actually
counted: Equation (4).

Precision = “4)
TP+FP
Recall: The percentage of positive accumulator occurrences for which a valid prediction was made is called REC. Equation (5).
Recall = ——— (5)
TP+FN
F1 Score: An F1 is a harmonic mean of two classification metrics: REC and PRE. Whereas in equation (6).
F1 — score = 2 * (precision*recall (6)

(precision+recall)

ROC: The ROC curve is a two-dimensional graph that illustrates the trade-off between sensitivity and false-positive rate as the
threshold is varied. A classifier's performance can be assessed using it. This statistic assesses the model's capacity to differentiate
between classes; a value of 1 indicates excellent discrimination, whilst a value of 0.5 indicates haphazard performance. As a result,
ROC-AUC is the go-to statistic for selecting the best classifier.
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4 RESULTS AND DISCUSSION

Analysis of the experimental results is carried out in this section. Performance is reported under some of the metrics such as REC
PRE, ACC, and F1. The computer configuration employed in this experiment was an 19-9820X that had a 3.30 GHz clock speed, 2
TB of RAM and an Ubuntu 20.04.1 LTS system. Anaconda Jupiter Notebook Python code was used to develop Python code The
results presented in Table 2 depict that the CNN model is effective to detect anomalies. The model registered a good ACC 0f 98.73%,
demonstrating its reliability in general since only two instances of the normal and the attack were misclassified. At the PRE of
96.61%, the CNN performs well as far as false positives are concerned; it does not report many false attacks because the maximum
found were only 34 attacks that are indicated incorrectly. The REC measure of 96.44%w also means that the model can accurately
target the occurrence of actual attacks, hence eliminating false negative values. In addition, with a F1- score of 93.98, the model is
characterized as consistently precise and recalling. These findings or results coupled together determine that the CNN model is a
solid and reliable intrusion detection algorithm.

Table 2: Performance Parameters for CNN model

Measures CNN
Accuracy 98.73
Precision 96.61
Recall 96.44
F1-score 93.98

Training vs Validation Accuracy

—&— Train_Accuracy
Val_Accuracy
0.8
- 0.6
L=
b
=
L]
<
0.4 4
0.2 +

T
0 5 10 15 20 25 30 35 40
Epochs

Figure 6: Accuracy curve of CNN Model

In Figure 6, the ACC curves for training and validation over 40 epochs show a continuous increase in both, suggesting that the CNN
model is improving in performance as the number of epochs increases. The initially training and validation accuracies increase
rapidly, which means that the model is quickly grasping the main tendencies in the data early in the training phase. As the epochs
advance, the curves curve closer and closer until they are finally stationary, with the training ACC nearly equal to 0.92 and at
validation ACC of around 0.85, which shows that there is not much overfitting of the model. The distance between the two curves,
however, is not very large, showing that the CNN model retains a good level of learning aptitude whilst being robust on unseen
validation data. This overall score proves that the model is effective at finding a balance between learning and generalization.

Figure 7 documents the training and validation losses of the CNN model throughout 40 epochs and clearly shows that both losses
keep decreasing as the training advances. The initial difference shows the training loss as greater than 1.0 and the validation loss is
a little bit lesser at about 0.8 but both decrease quite fast at the early epochs signifying effective learning. With the passing of epochs,
training loss steadily declines, currently standing at about 0.28, whereas the validation loss almost stops changing, being about 0.38,
which indicates that the model is well-optimized. The strong congruence between training and validation loss patterns, with no
prominent divergence, indicates that no overfitting of the CNN model emerges, and that the model learns well based on the provided
information. This consistent reduction in loss validates the robustness and stability of the model in minimizing classification errors.
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A CNN model's confusion matrix, shown in Figure 8, would most likely be employed for an intrusion detection or other
cybersecurity-related activity, labeling instances as "Attack" or "Non-Attack:". In the given matrix, and show that the model
accurately classified 80% of the occurrences as Attack (True Positives) and 80% as Non-Attack (True Negatives). This indicates a
strong diagonal, representing correct classifications. Conversely, it incorrectly classified 20% of non-attack instances as Attack
(False Positives) and 20% of Attack instances as Non-Attack (False Negatives). The model's robustness is demonstrated by its low
FP and FN rates, as well as its high TN and TPR.
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Figure 9: ROC Curve of CNN model

Figure 9 displays the ROC curve of the CNN model, which shows how well it can differentiate between the 'Attack' and '"Non-
Attack' groups. The purple "non-attack" line and the green "attack" line are positioned around the graph's upper left corner. With a
low FPR and a high TPR across many classification criteria, this spot reflects an efficient model. This remarkable performance is
confirmed by the AUC values, which are 0.9896 for the non-attack case and 0.9851 for the attack case. The model's ACC in
classifying events as positive or negative is strongly shown by an AUC value near to 1.0. The dashed diagonal line represents a
random classifier; the significant distance between the model's curves and this baseline further highlights its superior predictive
capability. This almost perfect ROC curve indicates that CNN model is very trustworthy in the task of classification.

Table 3: comparison between base and propose model Performance matrix for Anomaly Detection Techniques in Network

Security
Matrix CNN LSTM[16] ET[3] LR[17]
Accuracy 98.73 87 97.9 69.92
Precision 96.61 88 97.71 70.36
Recall 96.44 91 97.73 69.92
F1-score 93.98 96 97.73 69.99

Table 3 informs the performance comparison between the performance of anomaly techniques used in network security between the
proposed CNN model and other benchmark models of LSTM, ET and LR. The results are definitive since even the CNN model
outshines the other alternatives in most of the evaluation measures. Its ACC of (98.73%), has the highest degree of consistency in
the detection of the right type of traffic that is normal or an attack. Similarly, its PRE (96.61) and REC (96.44) demonstrate a good
tradeoff between false alarm and detection of real cases of attacks. Despite the competitive score of F1 (96%) on LSTM, CNN has
a very high rate in the F1-score (93.98%), as well as general higher accuracies and stabilities in guiding values. In the comparison
to ET which unlike CNN delivers amazing ACC score of 97.9, and LR which slightly falls behind with the ACC score of only 69.92,
the CNN model was proven to be healthy and effective to place itself in the network safety context as an excellent and efficient tool
in anomaly detection.
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4.1 Comparative Analytics

The performance of the proposed CNN model and the baseline approaches of LSTM, ET, and LR that were used in this paper clearly
give strong reasons to support the fact that the CNN was useful in terms of network security when it comes to detecting anomalies.
Although both models, i.e., ET and LSTM, demonstrated competitive ACC results (97.9% and 97.4%, respectively), ET exhibited
moderate variability concerning the remaining measures, with LSTM having the best results in terms of REC and F1. As opposed
to both of them, CNN demonstrated a balanced performance in terms of all metrics. LR by comparison has considerably lower ACC
of 69.92, and thus, is not suitable in a complex task of intrusion detection. The CNN model has a higher ACC of 98.73, PRE of
96.61, and REC of 96.44 with an outstanding ROC-AUC value of 0.98 as compared to the other models which proves the high
degree of reliability in the correct classification of an attack or an non-attack traffic. These results not only prove that CNN is more
effective when it comes to generalization, but they also provide more accurate trade-off between high sensitivity of detection and
low false alarms than the other methods discussed.

5 CONCLUSION AND FUTURE SCOPE

Anomaly predicting is a significant aspect of modern cybersecurity, as it allows to anticipate the failure of the system in advance
and insure important setups and vulnerable information against possible attacks. In this research, an anomaly detection system that
relies on CNN was developed to contribute to the increasing demand in regards to effective security systems. The framework attained
balanced learning through the incorporation of pre-processing methods, i.e. SMOTE balancing, feature selection, and normalization
and it led to improved detection performance. The CNN proposed had high PRE, REC and F1 of 98.73% in the UNSW-NB15
dataset with improved results compared to the baseline models which included LSTM, Extra Trees and LR. These results show the
extent of the model efficiency in intrusion detection and the areas where it can be implemented within the security circles in the real
world. However, the flexibility to the previously never realized and dynamic forms of attacks in active settings will need further
study. The prospective areas of work are the investigation of hybrid and ensemble approaches to combining CNNs with other deep
architecture to become more robust. Scalability may be strengthened by the implementation of the innovative feature engineering
and dimensionality reduction methods, particularly concerning big and complicated data. Besides, the implementation of the
framework into IoT and cloud architecture will increase its usability. By enhancing interpretability and trust, XAl can be a great fit
for large-scale cybersecurity systems that are constantly evolving.
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