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Abstract—The quick growth of IoT technologies has led to 

major cybersecurity issues for detecting abnormal signs that 

point to security risks or operational problems. The study offers 

a machine learning technique for identifying irregularities in 

Internet of Things networks by analyzing key performance 

indicators, such as packet loss, congestion in the lungs and 

bandwidth, and latency. The method includes data 

preprocessing as its first step, followed by SHAP-based feature 

importance analysis, then classification through Random Forest 

(RF) and Support Vector Machine (SVM). The analysis 

included 1000 entries before anomalies were found through the 

Tukey method and then classified. The experimental data shows 

SVM performs better than RF, producing accuracy at 96.5% 

with precision at 95.9% while recall reaches 96.2%, and the 

resulting F1-score comes out at 96.0%. SVM achieves effective 

anomaly detection in IoT environments according to 

comparison results obtained through Logistic Regression and 

Convolutional Neural Networks (CNN). The research shows 

that machine learning brings prospective improvements to IoT 

security because it enables preemptive anomaly detection, which 

results in better real-time defense capabilities against threats. 

Keywords—IoT security, anomaly detection, machine 

learning, threat mitigation, scalable systems, cyber threats. 

I. INTRODUCTION 

Through Processing must take place very instantly since 
IoT sensors and smart items exchange data automatically 
without requiring human participation . To operate within the 
constrained computational budget, new procedures must be 
developed for any data analytics carried out via IoT. A type of 
data analysis called Outlier behavior classification or 
recognizing events is another name for the detection of 
anomalies, looks for unusual circumstances inside the system 
[1]. The techniques used to identify anomalies serve as 
inspections for incoming communication at several levels [2], 
above the lowest point to the data center of the IoT network. 
In the latter case, reliable detection is crucial for data cleaning 
and classification [3][4]. 

A behavior that deviates from the norm or anticipated 
behavior is called an anomaly. These are a few dataset patterns 
that don't follow their typical patterns [5][6]. One method for 
identifying the dataset's anomalous data pattern is anomaly 
detection [7]. Anomalies are referred to by a number of names 
for various application fields, including outliers, exceptions, 
surprises, unanticipated findings and oddities [8]. 
Applications such as credit card fraud, computer network 
intrusion detection systems, health care and insurance fraud 
detection, wireless banking sensors, and social networks all 
employ anomaly detection, etc [9]. 

Devices with limited resources cannot afford traditional 
security methods in the IoT [10], making security a tough task 
in and of itself. Perimeter security does not apply to distributed 
IoT networks [11], and current alternatives like the cloud have 
significant latency and centralization issues. Another factor 
contributing to this difficulty is that IoT device manufacturers 
frequently ignore security specifications since they have a 
rush-to-market mindset [12]. Additionally, the complexity of 
protecting IoT devices has increased due to the absence of 
security standards. The nature of IoT applications and these 
difficulties necessitate a monitoring system that can spot 
irregularities outside of organizational borders both at the 
network and device levels [13]. 

The IoT is an important technology that serves as the basis 
for a number of upcoming applications in the domains of 
intelligent manufacturing, transportation, and healthcare. The 
IoT uses many sensors detectors information about objects, 
people, including surroundings. Regular transmission of this 
data to the cloud server enables application administrators to 
increase the efficiency of their programs.  Based on data 
analysis, AI technologies assist in implementing autonomous 
application control [14]. 

IoT infrastructure anomaly detection using ML and DL. 
The study focused on issues of privacy and security pertaining 
to data storage and sharing protocols in intelligent health 
applications [15]. The study conducted a study on ML 
approaches for IoMT authentication and anomaly detection 
systems. The paper discusses ML methods for finding 
irregularities to provide information on IoT network security. 
Additionally, emphasis is placed on Hadoop-based big data 
processing frameworks and identifying anomalies in IoT 
networks using ML techniques [16][17]. An additional 
explanation of how ML techniques, such as advanced ML 
strategies and intrusion detection systems, are used in the field 
of anomaly detection in the IoT [18]. 

A. Structure of paper 

This is how remainder of the document is structured.  The 
body of research on ML methods for IoT recognition of 
anomalies is reviewed in Section II. Models for classification, 
feature selection, preprocessing, and data collecting are all 
covered in Section III's approach. Section IV presents results 
analysis and discussion based on comparing performance 
across different ML models. Finally, Section V concludes the 
paper with potential improvements for IoT anomaly detection. 
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II. LITERATURE REVIEW 

In this section, makes available the earlier studies on 
Scalable IoT Threat Anomaly Detection Systems. A 
comparative review of previous studies on Scalable Anomaly 
Detection Systems for IoT Threats is given in Table I below. 
It summarizes key aspects, including the methodology used, 
dataset employed, model performance, and limitations/future 
work recommendations.  

Alrashdi et al. (2019) their proposed AD-IoT solution uses 
the RF machine learning method to identify anomalies 
intelligently and mitigate IoT cybersecurity vulnerabilities in 
smart cities.  The rapid expansion of network traffic in smart 
cities through IoT systems generates fresh security threats 
because IoT devices directly link to sensors leading to cloud 
servers. The researchers tested their model with current data 
to verify its accuracy.  When deployed the AD-IoT delivers a 
99.34% accurate classification together with the lowest 
recorded false positive rate. According to their findings [19]. 

Gomez, Gutierrez Portela and Diaz Triana (2024) aim to 
develop an anomaly-based IDS specifically designed for IoT 
systems with low computational capacity in order to mitigate 
these security challenges. The results demonstrated that the 
Isolation Forest anomaly detection algorithm is the most 
suitable among those evaluated for separating attack network 
activity from regular traffic, with an AUC of 0.85. It is 
recommended to apply additional anomaly detection 
techniques to further optimize resources and enhance metrics. 
Numerous studies have attempted to address this issue using 
deep learning-based IDS, yet these systems remain unsuitable 
for low-power IoT devices [20]. 

Salem, Said and Nour (2024) One way to enhance IoT 
security is using an AI-Driven Anomaly Detection 
Framework. The framework improves IoT equipment 
reliability by minimizing operational disruptions boosting 
defense methods and sustaining technical performance of 

associated hardware. The identification of abnormal patterns 
through  AI anomaly detection in IoT systems shows potential 
as a solution to deal with this issue. The research outcomes 
confirm how machine learning methods assist in anomaly 
detection capabilities through their effective operations [21]. 

Sana et al. (2024) focus on AD is a crucial method for 
spotting departures from typical system behavior that might 
point to IoT intrusions. With RF and Ensemble Bagged Tree, 
the used ML models showed exceptional training accuracy 
topping 99.90% accuracy, achieving balanced MCC of 
99.78%, an F1-score, and an AUC of 1.00. The suggested ViT 
architecture greatly improved performance with 100% of all 
metrics, whereas the original DL LSTM model produced an 
accuracy of 99.97%. Additionally, it had perfect training 
accuracy and a validation accuracy of 78.70% [22]. 

Li et al. (2022) propose a organization that uses edge 
computing to detect anomalies in IoT networks and identify 
possible dangers. The LSTM autoencoder builds each detector 
in an unsupervised way, so it doesn't need any labeled attack 
data and can handle new zero-day attacks as they emerge. The 
test proves that ADR IoT is capable of efficiently and 
successfully detecting a range of assaults based on the IoT, 
suggesting that it might potentially help create an IoT 
ecosystem that is more secure [23]. 

Vajpayee and Hossain (2024) propose an anomaly-based 
method tailored for IoT, using anomaly scores, asset 
valuation, and controls to identify risks and offer mitigation 
suggestions. Effective detection relies on diverse ML 
techniques. Identifying high anomaly scores is crucial for 
informed decision-making. A tailored approach to assess 
security risks in IoT systems, focusing on anomaly detection, 
asset valuation, and risk quantification to strengthen IoT 
resilience against evolving threats [24]. 

TABLE I.  COMPARATIVE TABLE FOR ANOMALY DETECTION SYSTEMS FOR IOT THREAT 

Reference Methodology Dataset Performance Limitations & Future Work 

Alrashdi et 

al. 

(2019)[19] 

A RF-based  AD-IoT solution for smart 

city IoT security threat detection. 

Focuses on analyzing network traffic 
anomalies introduced by IoT devices 

connected to large cloud servers. 

Modern IoT 

network traffic 

dataset 

Accuracy: 99.34%, Lowest false 

positive rate Effective in handling 

real-time IoT security threats. 

Needs further validation on diverse 

IoT environments and scalability for 

large-scale smart city deployments. 
Performance on emerging threats like 

zero-day attacks is unclear. 

Gomez, 
Gutierrez 

Portela and 

Diaz Triana 
(2024)[20] 

Developed an anomaly-based IDS 
optimized for IoT systems with low 

computational capacity. Uses Isolation 

Forest algorithm to detect network traffic 
anomalies. 

IoT network 
traffic dataset 

AUC: 0.85 - Effective for 
distinguishing between normal 

and attack traffic. 

The high computational cost of deep 
learning intrusion detection systems 

makes them inappropriate for low-

power Internet of Things devices.  To 
maximize efficiency and enhance 

detection precision, more anomaly 

detection methods are required. 

Salem, Said 
and Nour 

(2024)[21] 

The following Models are used in the 
deployment of interference uncovering 

systems based on ML: RF, ViT, LSTM, 

and Ensemble Bagged Tree. Tunes 
hyperparameters via Bayesian 

optimization. Focuses on reducing 
system downtime, improving security, 

and ensuring performance consistency. 

IoT security 
datasets 

Enhanced anomaly detection 
capability. Improves IoT system 

reliability and response time. 

Lack of details on computational 
efficiency when deployed on 

resource-constrained IoT devices. - 

Requires benchmarking against deep 
learning models to assess 

comparative performance. 

Sana et al. 

(2024)[22] 

The following in order to develop 

machine learning-based intrusion 
detection systems, models are used: RF, 

ViT, LSTM, and Ensemble Bagged Tree.  

Tunes hyperparameters via Bayesian 
optimization. 

IoT security 

datasets 

Random Forest & Ensemble 

Bagged Tree: 99.90% accuracy, 
AUC = 1.00, F1-score = 99.78%. - 

LSTM model: 99.97% accuracy. - 

ViT model: 100% accuracy, 
78.70% validation accuracy. 

ViT model validation accuracy is 

lower than training accuracy, 
suggesting overfitting risks. - Needs 

real-world testing on large-scale IoT 

environments. 

Li et al. 

(2022)[23] 

LSTM Autoencoder-based anomaly 

detection framework with edge 
computing integration. Designed to 

IoT network 

traffic dataset 

Effectively detects previously 

unseen IoT attacks. Handles zero-
day vulnerabilities and emerging 

threats. 

Performance depends on high-quality 

training data. Requires further testing 
for large-scale IoT network 

deployments. 
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detect zero-day attacks without requiring 

labeled data. 

Vajpayee 
and 

Hossain 

(2024)[24] 

Anomaly-based detection method 
integrating asset valuation, risk 

quantification, and anomaly scores to 

assess IoT security threats. Uses multiple 
ML techniques to improve detection 

efficiency. 

IoT security 
datasets 

Identifies high anomaly scores 
crucial for security decision-

making. Provides a tailored 

approach for risk assessment in 
IoT networks. 

Needs validation on real-world IoT 
infrastructures. Effectiveness against 

adaptive cyber threats remains to be 

tested. 

A. Research Gaps 

Despite significant advancements in Scalable Anomaly 
Detection Systems for IoT Threats, several critical gaps 
remain unaddressed. First, most existing studies focus on 
improving detection accuracy but overlook the real-time 
computational efficiency required for resource-constrained 
IoT environments. While deep learning models like LSTM 
and ViT demonstrate high accuracy, their high computational 
cost makes them impractical for low-power IoT devices. 
Second, the fact that a lot of models are based on pre-labeled 
datasets limits their capacity to identify zero-day attacks and 
adjust to changing threats in actual IoT networks. Although 
unsupervised learning approaches such as LSTM 
autoencoders and Isolation Forest offer potential solutions, 
their detection capabilities still require optimization to reduce 
false positive rates and enhance scalability. Third, existing 
solutions often lack a comprehensive risk quantification 
mechanism that integrates anomaly scores with asset 
valuation to prioritize threats effectively. While some 
frameworks address risk assessment, they do not fully 
integrate with real-world IoT security infrastructures, limiting 
their practical implementation. Additionally, many studies do 
not explore the impact of adversarial attacks on anomaly 
detection models, leaving systems vulnerable to sophisticated 
cyber threats. Therefore, Future studies must concentrate on 
lightweight, flexible, and explainable AI-based intrusion 
detection systems that balance accuracy, efficiency, and real-
time applicability while improving risk-based threat 
mitigation strategies. 

 
Fig. 1. Methodology Flow Diagram for Anomaly Detection in IoT 

III. METHODOLOGY 

The AD methodology in IoT threats proceeds through a 
systematic framework starting with IoT threat dataset 
accumulation followed by data preprocessing for value 
handling and dimension reduction and anomaly identification 
step. SHAP analytical methods determine which features hold 
the most prominent influence on the classification evaluation. 
In order to attain performance consistency and enhance model 
outcomes, the data is normalized.  Due to their capacity to 
forecast across non-linear connections and analyze intricate 
patterns, RF and SVM are used for anomaly identification.  In 
the final evaluation step, the models' effectiveness is assessed 
utilizing important assessment criteria like accuracy, 
precision, recall, and F1-score.  As shown in Figure 1, the 
procedure concludes with a results analysis to evaluate the 
model's capacity to recognize IoT-based security concerns. 

The data flow diagram's subsequent phases, which are 
illustrated below, need a thorough explanation: 

A. Data Collection 

This study utilized network data that researchers obtained 
from an experimental network system that duplicated genuine 
network situations. The virtual network topology emerged 
from using EVE-NG tool version 4.0.1-86-PRO to connect 
various nodes such as routers and servers. A customized 
network comprised the data collection system. Network 
metrics obtained from simulations were organized into a CSV 
file structure within the dataset. Media encoding at different 
bitrates through FFmpeg version 4.4.2 created video streams 
that were transmitted between servers to establish diverse 
network simulations for anomaly detection purposes. 

B. Data Pre-processing 

Data pre-processing operations were performed to 
enhance the dataset's quality and reliability prior to training, 
resulting in several modifications to the acquired data. The 
steps included: 

 Handling Missing Values: The analysis removed 
instances containing data gaps and filled missing or 
inconsistent values through statistical methods. 
Network congestion, along with packet loss and 
throughput variations, formed the basis for the main 
features which underwent analysis. 

 Dimensionality Reduction: The application of PCA 
resulted in dimension reduction of the dataset through 
which researchers maintained the most critical data 
variations. 

 Anomaly Labeling: The Tukey approach examined 
the data to identify global anomalies before supervised 
learning models could effectively classify anomalies. 

C. Feature Importance 

In Feature reputation to determine the most relevant 
features influencing anomaly detection, SHapley Additive 
exPlanations (SHAP) were used. In ML, feature significance 
is a technique used to assess how each input information 

Data Pre-processing 

Data Collection 

Handling 

Missing Values 

Dimensionality 

Reduction 

Anomaly 

Labeling 

Feature Importance (SHAP) 

Data Normalization 

Classification 

Models with Random 

forest and SVM 

Model Evaluation including 

Accuracy, Precision, Recall 

and F1-Score 
Result 

IoT Threat Dataset 

Data Splitting 
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affects the model's predictions. It helps improve model 
interpretability, optimize performance, reduce dimensionality, 
and detect biases. 

D. Data Normalization 

Normalizing data is important since network metrics had 
varying scales and units [25], data normalization was 
performed to guarantee consistency and enhance model 
functionality. The Min-Max Scaling technique was applied, 
transforming all numerical values into a range between 0 and 
1. The Normalization is calculated as Equation (1):  

 𝑋𝑛𝑜𝑟𝑚 = 𝑋 − 𝑋𝑚𝑖𝑛𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛𝑋{𝑛𝑜𝑟𝑚} =  𝑓𝑟𝑎𝑐{𝑋 −
                            𝑋{𝑚𝑖𝑛}}{𝑋{𝑚𝑎𝑥} −  𝑋{𝑚𝑖𝑛}} 

This standardization helped eliminate bias caused by 
differing feature scales, facilitating more accurate anomaly 
detection. 

E. Data Splitting 

The dataset was divided into two parts: 20% for testing and 
80% for training. While the testing data was used to assess the 
machine learning models' performance on unseen data, the 
training data was used to build the models. 

F. Classification Models 

Several ML models were employed to classify network 
anomalies, each offering unique strengths and trade-offs in 
terms of precision, comprehensibility, and mathematical 
effectiveness: 

1) Random Forest 
In order to enhance prediction performance, RF builds 

many decision trees and aggregates their results using an 
ensemble learning technique. It works essentially like training 
many trees on different subsets of the dataset, incorporating 
randomness in feature selection along with sampling the data. 
As this ensemble technique reduces the risk of overfitting, it's 
far more robust to noisy data and higher-dimensional feature 
spaces [26]. In anomaly detection, RF is able to learn decision 
boundaries based on historical data and thus can distinguish 
between normal and anomalous network behavior seen in 
Figure 2. Each of the several decision trees that make up the 
model structure was trained using a bootstrapped sample of 
the dataset. To increase variety among trees and lower bias 
and variance, a haphazard subset of traits is taken into 
consideration at each split. In inference, each tree classifies the 
input independently, and the final prediction is achieved 
through Regression tasks use averaging, whereas assignments 
involving classification use voting with the majority. In 
addition, this mechanism is effective for IoT anomaly 
detection since it captures non-linear relationships and detects 
subtle variations in network metrics. One of the contributing 
factors to RF effectiveness is its robustness against high 
dimensional data as well as its feature selection ability in 
removing noisy or irrelevant features. In comparison to real 
data is less prone to overfit than its conventional analogue, 
DT, and strikes a reasonable balance between recall and 
precision. In this way, it would be able to avoid getting false 
positives for many of the anomalies, thereby increasing its 
reliability. RF will be a perfect choice for such real-time IoT 
security applications that exigency for efficiency in 
computation and accuracy in detecting are necessary. 

 
Fig. 2. The Architecture of Random Forest  

2) Support Vector Machine (SVM): 
SVM is a powerful prototypical that has an ideal 

hyperplane for data classification. As an alternative to 
conventional models like RF or DT, SVM models use a kernel 
function to change the features of inputs into higher 
dimensions for its powerful ability to handle complex, non-
linearly separable data shown in Figure 3. This aspect proves 
it to be very useful in the practice of anomaly detection since 
malicious patterns are usually quite intricate and cannot be 
detected by simpler models. 

 
Fig. 3. The Structure of SVM Model 

An SVM model's structure includes a hyperplane that 
divides normal and anomalous instances and Support vectors 
are important pieces of information that define the decision 
boundary. This hyperplane's location is established by 
optimizing the margin, guaranteeing that the model performs 
effectively when applied to previously unknown data. 
Different kernel functions, for instance, the linear, 
polynomial, and RBF, enable SVM to adapt to different data 
distributions, and this is why it is considered a much more 
advanced concept than traditional classification models. The 
training process involves solving a quadratic optimization 
problem, which becomes computationally expensive as the 
dataset size increases. These are challenges despite its great 
utility in IoT anomaly detection security issues, particularly 
deep pattern recognition needs and high-accuracy 
classification scenarios.  

G. Performance Metrics and Model Evaluation 

To select the evaluation metric, to properly analyze the 
model, it is essential to comprehend how each metric is 
measured. The objective was to evaluate the effectiveness of 
ML techniques by examining each of these capabilities 
metrics: accuracy score, precision, recall, and F1 score.  
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1) Accuracy 
The percentage of cases the accuracy of The categorization 

of the representation is the total error in class prediction.   
However, performance may be misrepresented by biased data. 
A classifier may correctly anticipate instances of the majority 
class while incorrectly categorizing cases of the minority 
class. The accuracy is calculated as Equation (2): 

 𝐴𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
 

2) Precision 
Once all of the data has been categorized, precision is the 

proportion of instances that are correctly assigned to a class. 
In this instance, it shows the proportion of corona cases that 
actually are corona cases. The precision is calculated as 
Equation (3): 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

3) Recall 
The number of instances that are accurately classified into 

a class is determined by recall or sensitivity.. This context 
measures the proportion of properly represented instances by 
the classifier among all carriers of the illness. The recall is 
calculated as Equation (4): 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

4) F1-Score 
The F1-score, often called the F-measure, is the weighted 

choral mean of accurately and recall.  This metric is best suited 
for usage when the dataset is significantly unbalanced. The 
F1-score is calculated as Equation (5):  

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 

Where,  

 TP (True Positive): The frequency with which a 
positive class was accurately anticipated by the 
mathematical framework. 

 TN (True Negative): This graphic shows how often 
The model projected the negative class accurately. 

 FP (False Positive): The model failed to accurately 
predict the positive class in some cases. 

 FN (False Negative): The quantity of false forecasts 
made by the model that anticipated the negative class. 

IV. RESULTS AND DISCUSSION 

In this segment, the simulated results of anomaly detection 
of IoT risks using ML techniques are discussed.  The findings 
of the dataset evaluation conducted for this study are 
represented in this part, which also includes performance 
metrics, classifier statistics, results, and a description of the 
dataset. 

A. Dataset Description 

There were about 1000 entries in the dataset, which were 
key features of throughput, congestion, packet loss, latency, 
and jitter. Each network state is represented as a data point 
recorded in a specific condition, including base scenarios, 
single video streaming, dual video streaming, or adaptive 
video streaming. The performance thresholds at which the 
network is tested span a wide range of data points to protect 
from anomalies. Experimental tests showed that packet loss 

and latency experienced increased with increasing congestion 
values, greatly affecting the network’s performance.  

 
Fig. 4. Correlation Heatmap of Network Parameters in IoT Systems 

As seen in Figure 4, several network parameters like 
throughput, congestion, packet loss, latency, jitter, video 
occupancy, bitrate video, and number of videos are correlated 
with each other in an IoT system. Red displays is a strong 
positive correlation, while blue shows a strong negative 
correlation. For example, video occupancy and congestion 
(0.70) is quite a high positive correlation indicating that higher 
congestion is related to greater video occupancy. On the 
contrary, throughput (-0.42) and congestion are negatively 
related in that as congestion increases, throughput decreases. 

B. Experiment Results 

The findings in this unit are the usage of ML in scalable 
DL for IoT using ML applied to a large dataset by using the 
RF and SVM models. As the classification models were 
trained and evaluated using the anomalies effectively labeled 
by the Tukey method, anomalies could be effectively labeled 
by the Tukey method. 

 

Fig. 5. Anomaly Detection in IoT Networks Using Time-Series Data 

Analysis 

In Figure 5, the throughput, congestion, and packet loss of 
the IoT network, and delay are displayed in four time-series 
charts that demonstrate anomaly identification. The normal 
data variations in time are represented by the blue lines, red 
dots being the detected anomalies. Most of these anomalies 
occur when the network is behaving in an unusual manner, 
potentially an indication of a threat or inefficiency in the 
network. This finds such visualizations crucial for discovering 
irregular patterns in the IoT traffic to help with securing its 
traffic proactively and optimizing networks. 
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TABLE II.  RANDOM FOREST AND SVM MODELS PERFORMANCE 

MATRICES FOR ANOMALY DETECTION FOR IOT THREAT 

Model Accuracy Precision Recall F1-Score 

Random Forest (RF) 94.3 93.8 94.0 93.9 

Support Vector 
Machine (SVM) 

96.5 95.9 96.2 96.0 

 
Fig. 6. Random forest and SVM models performance matrices for anomaly 

detection for IoT threat 

Table II and Figure 6 provide a comparison of SVM and 
RF models for identifying irregularities related to IoT security 
risks.  With an accuracy of 96.5%, precision of 95.9%, recall 
of 96.2%, and F1 score of 96.0%, the SVM model is shown to 
perform better than the RF model, which has an accuracy of 
94.3% and lower accuracy in other metrics. The results 
indicate that SVM is better at finding the anomalies obtaining 
higher detection accuracy and reliability. Although SVM has 
a high performance, RF is still a competitor with less 
computational demands, pleasingly suitable for real time IoT, 
as shown in Figure 6. 

 
Fig. 7. SHAP Value Analysis for IoT Network Performance Metrics in 

Machine Learning Models 

Figure 7 visualizes the impact of different network 
performance metrics on an ML model’s prediction. The 
following Throughput along with congestion along with 
packet loss and delay and jitter are presented on the vertical 
axis beneath the x-axis that shows the SHAP values which 
represent each feature's effect on the predicted model results. 
The colored dots on the plot represent data points whose 
attributes match the feature value color; low values are blue, 
while high values are red.  The prediction is more heavily 
influenced by features with higher SHAP values, which can 
make it easier to understand how the model makes decisions. 

C. Comparative Analysis and Discussion 

The classification Among the key performance metrics 
utilized to Accuracy and precision together with recall and F1-
score were used to evaluate the models. A summary of the LR, 
CNN, RF, and SVM models' machine learning performance 

in the study on anomaly detection for IoT risks is shown in 
Table III below. 

TABLE III.  COMPARISON BETWEEN VARIOUS MODELS FOR ANOMALY 

DETECTION FOR IOT THREAT 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Logistic Regression 
(LR) [27] 

68.97 75.07 62.76 67.86 

CNN [28] 94.2 - 91.7 93.0 

Random Forest (RF) 94.3 93.8 94.0 93.9 

Support Vector 
Machine (SVM) 

96.5 95.9 96.2 96.0 

 
Fig. 8. Comparison of Various Models for Anomaly Detection in IoT 

Threats. 

The comparison of many ML models used to identify 
irregularities in IoT security is displayed in Figure 8. 
Additionally, the examined models include CNN, SVM, LR, 
and RF. It has 96.0% F1 score, 96.2% recall, 95.9% precision, 
and 96.5% accuracy. CNN achieves a high accuracy of 94.2% 
without any precision data, and similar metrics to RF are used. 
With its lowest accuracy of 68.97, LR is a simpler model that 
is ineffective in identifying abnormalities in the IoT. 
According to the results, SVM and RF are the best models for 
detecting anomalies in IoT scenarios where threat 
identification requires high precision and recall. 

V. CONCLUSION AND FUTURE SCOPE 

Incorporated into this problem are the security challenges 
of IoT devices rapidly proliferating and, therefore, require 
robust and scalable anomaly detection systems. This 
introduced an ML-based method that was characterized by 
accuracy, scalability, and real-time processing to identify and 
reduce possible IoT hazards.  The suggested technique 
improved security overall and successfully identified 
abnormalities at the cost of false positives. By optimizing ML 
algorithms and IoT infrastructure, the plant's operating 
efficiency was significantly increased. In order to decrease 
unplanned downtime and improve resource utilization, 
accurate anomaly detection algorithms were adjusted and 
optimized with lower false favorable rates. The study's 
findings are consistent with other The researcher conducts 
investigations related to IoT security combined with anomaly 
detection techniques in industrial environments. Early 
anomaly detection and improved security in IoT systems 
section for IoT with the use of ML-based security solutions 
worked well. 

Future research on DL models may be applied to improve 
detection accuracy and flexibility in response to evolving 
threats. In addition, using federated learning adds privacy, 
while providing the capability of joint threat intelligence. 
Although the deployment of lightweight models designed for 
IoT devices with limited resources is an important problem, 
this should be done in a way that enables real-time threat 
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mitigation without sacrificing performance. Also, better 
decision-making can be achieved with trusted and explainable 
AI in anomaly detection systems. 
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