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Abstract: We study the question of the composition of the mixed fractional integral and the mixed fractional derivative in sufficiently broad class
of functions. The treatment formula for mixed fractional derivative is obtained.
Key words: mixed fractional integral, mixed fractional derivative, function of two variables, Riemann-Liouville integrals.

INTRODUCTION

Various forms of fractional integrals and derivatives are known. Fractional integrals and Riemann-Liouville derivatives
are the most common in the scientific literature [1]. Operators of generalized fractional integro-differentiation with Gauss
hypergeometric function.

Direct extension of the Riemann-Liouville fractional integro-differentiation operations to the case of many variables,
when these operators are applied for each variable or some of them, gives the so-called partial and mixed fractional integrals and
derivatives. They are known [1], as well as [4], [5], [6], [7], [8], [9], [10], [11], [12]. Thus, in [2], using the two-dimensional
Laplace transform, a solution of the two-dimensional Abel integral equation was obtained.

In this paper, we study the question of the composition of the mixed fractional integral and the mixed fractional
derivative in sufficiently broad class of functions. The treatment formula for the mixed fractional derivative is obtained. The
results obtained can be applied in the theory of differential equations containing the mixed fractional derivatives.

Lemma 3 on the representability of f (X, y) e AC™™ (ﬁ) function in the form of (6) and Lemma 4 generalized is
the previously known Lemmas 1 and 2 for the two-dimensional case. Lemmas 3, 4 permit to prove the theorem (a necessary and
sufficient condition for the representability of f (X, y) function as the mixed fractional integral of a summable function) and

Theorems 2 and 3 about the composition of a mixed fractional integral and a mixed fractional derivative. Note that Theorems 2
and 3 generalize the results of Theorem 2.4 [1, p. 44] for the two-dimensional case.

PRELIMINARY INFORMATION AND NOTATION
The important role in the theory of fractional integro differentiation is played by absolutely continuous functions.

Let Q={(x,y):a<x<b,c<y<d} —o<a<b<+mw, —o<c<d<+mo.
Definition 1 [1, p. 2]. f(X) function is called absolutely non-discontinuous into segments [a,b] , if for any

€ > Othere exists O > O such that for any finite set of pairwise non-intersecting intervals [ak ,bk]e [a,b], k=1,m,

such that Zm:(bk — ak)< O, the inequality Zm:‘ f (bk)— f(ak){ < € holds. The space of these functions is denote by
k=1 k=1

AC([a, b]).
Definition 2 [1, p. 2]. Let us denote by AC" ([a, b]) where N = 1, 2,..., the spaces of functions f (X) which have
continuous derivatives up to order N —1 on [a, b] with f (n_l)(X) e AC ([a, b])
Definition 3. A function f (X, y) is called absolutely continuous in Q| if for any € > O there exists O > O such

that for any finite set of pairwise non-intersecting intervals A, = {(X, y): X SX< Xy Y SYS Y, } the sum of

the areas of which is less O, the inequality holds
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Z‘f(Zk’yzk) (2k’y1k)_f(1k'y2k)+f(xlk’y1k)(<8’ 1)

and if, moreover, f(a y)e AC([C d]) and f(X C)e AC([a b]) The class of all such functions is indicated
AC(Q).

Definition 4. By AC nm (f_l) where N = 1, 2, ..., let us denote the class of functions continuously differentiable on
n+m-2

ﬁ up to order (n -1 m —1), and its mixed partial derivative is absolutely continuous in ﬁ

n—18 m-1

y

It is known that the class AC”([a, b]) belongs to those and only those functions f(X) that are representable as
antiderivatives of Lebesgue summable functions:

~[wx)dx+C, w(x)eLy(ab) @

OX

Lemma 1 [1, p. 39]. The space AC" ([a, b]) consists of those and only those functions f (X) which are represented

in the form
X

1 n-1 < k
f(x):mi(x—t) (p(t)dt+k2=(;Ck(x—a) , 3)
where (p(X) € Ll([a, b]) , Ck being arbitrary constants.

In the formula (3)

ot)= ") Co="1" @
The last equality uses the notation f (n)(X) = %SX)
X

A similar property of the functions f (X, y) € AC(?)) is as follows.

Lemma 2 [3, p. 238]. The class AC (ﬁ) consists of those and only those functions f (X, y) which are represented in
the form

If(ptsdtdstJ‘\u dt+'fn s)ds+C, (5)

Where (p(X, y) ( ) (XC) ([a b]) ( ) Li([C, d]) and C is an arbitrary constant.

In order to generalize the last lemma to the case of a class AC™" (Q) we need the following lemma.

Lemma 3. Let f(X y) € AC(_) then

LMt s)dtds ot £00(a,
Ij ) +Z ( Y)(

f(xy)= (

nlmlI

(x-t)"(y-s)" & il

m—1f(0k 1 m—1f(lk |
" %C)(V—C) -2 .(a 9 ix-a)(y-cf @
k=0 : io ko Ik!
i+k
In formula (6) the notation used f (i'k)(X, y) ddXT—CE;(/I’(y)
n+m-— 2f
Proof. Lethe ———— T € AC (Q) By virtue of Lemma 2, we have
ox"toy™
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y X y
oy [ olt,s)dtds + [ w(t)dt+ [n(s)ds+C, (7)

Integrating sequentially (7) times N —1 by X and times M —1 by Y, we get

f(x,y)=( I !£

an+m—2 f jf

“olt,s)dtds +

O'—.‘<

(y‘c)mf T(x—tr-lw(t)dw (‘a)l

(n—1)Y(m-1)!
> % (y)x-a) + S50y —c) ®

(y) 1
where T ( 0 n-— l) X) (k 0 m-— 1) is arbitrary function. When integrating, the well-known for N -
multiple mtegral formula is used [1]

1 E}
Idxjdx '[F dx_—j(x t)" F(t)dt, ©)
(n-1)t3
proof, which is easy to |mplement by mathematical induction. It will be clear from the proof that an arbitrary constant in formula
(7) is associated with arbitrary functions of formula (8) by the relation

(N1 (e)+(m-11%) (@) =Cy.

i+k

Since f(X, y)e ACn,m(g_Q), then derivatives ;(a;k

i<y—s>m-ln<s>ds+

(O <i<n, 0<k< m) exist and are continuous in €2 .

Calculating the derivatives with X respect to the order 0,Nn —1 of the function f (X, y) given by formula (8), and assuming in
them X = a, we obtain the equalities

i m-1
%fy) =ilg (y)+ > 7 (afy-c), i=0,n-2, (10)
k=0
o f(a,y) 1 } n(s)ds _ ) 5
ox L = (m _1)! _[ (y _ S)l—m + (n _1)!Tn—1(y)+ kzzc; T ' (a)(y - C) - (A1)
Similarly, differentiating (8) by Y and assuming Y = C, we obtain the equality
k ) -
0 23(/): ) 1T (x)+ Zr c)x-a), k=0,m-2, (12)
m-1 n-1 .
omif(xe) 1 f oyl )dt +(m-1)1T, ,(y)+> 1™ Y(c)x-a) . 3

RN

Expressing from formulas (10) - (13) T; (y) and .fk (X) respectively, we get

Il
o

?_ifi(y)(x ~a) + mZ_l’fk ey ) = 5 ;!a)i (ai oS- C)k]+

i—0 OX o
+m 1( ) 8kf( ) n—1T'k X_ai ~ ( _a)n y T](S)ds
5K ( R okal |- CGET T

i ( X _§i0ca) 21lay) (-0 2 ilao)
'!xt)l =l kZ ! oy
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o (x= "1fn i\v

(=D (m-2i (y-sf ™ (n- 1 Dt (x—tf "
n-1 m-1 ( ) ()
5 Seeay-o L fk.(a)j. ”
s k! i!
Calculating the mixed derivatives al+kf of the function (8) at a point (a C) we get
’ ox'oy* P e
i+k —(k) ~(i)
: 10 T(allC) _T (C)+ T (a) (15)
ik! ox'oy k! !
Substituting (14), (15) into (8), we get
X Y n-1 i
o(t, s)dtds 10 f(a y) i
fxy)= (n—1)( )'!!xt)l”y s) ™ Z):I' ox! (x-a)+
ot 1 0% f(x,c) 1 9% f(a,c) : 5
Iyt of =2 2 ooyt X-aJ(y=cf. ao
_ o™"f(a,c) _
Equality (6) follows from (16) and from the fact that (p(X, y) = W . The lemma is proved.

The following lemma gives a description of the class AC™"™ (Q) It generalizes Lemma 1 to the case of two variables
and Lemma 2 to the case N+ M > 2.

Lemma 4. The space ACn’m(f_Z) consists of those and only those functions f (X, y), which are represented in the
form

F¥)= gy ljf Ay —s)" ot s)dtds +
Sed I<x_t)“-lwk(t)dt+§i§r;a’ [(y s ns)ds +

+Z gcik(x—a)i(y—c)k , 17)
where 9(x, y)e L(Q) v, (x)e Labl) (k=0m-1). n(y)eLc.dl) (=0n-1). C, being

arbitrary constants.

Proof. Necessity. Let f(X y)e ACn’m(_). According to the lemma 3
n-1

PR N )
L [y i S Y T
n-1 f

I'k—( ~a)(y-c). a8

Because f (n-Lm-3) (X y) e AC (Q) : then f (0t m‘l)(a, y) € AC([C, d]) , consequently,
f("19(a, y)e AC™([c,d]). fromnere f“(a,y)e AC™([c,d]) (i=0,n—1). use lemmars, c.39]

f“'o)(a,y)z 1 ji ni(s) ds+§w(y—c)k 19)

(m -1 (y- S)lim o k!
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where M (y)e Li([C, d]) Then
1000y § () b ) g
— T Sil(m-1¥ (y—s)™" o0
n-1 m-1 f(ik) _
o5 S ay(y oy
io ko 1!k!
Similarly, it is proved that
mlfOK(XC)( o) = G (y-¢of T v, (t) dt+
~ Kl ikl (n=1)1 (x—t)" .
n1 ml f ik ( a.c 1)
3 3 E ey (y-of
i=0 k=0
where \Vk( ) Li([a b]) Substituting (20), (21) into (18), we obtain the formula (17), in which
C, R '(a,c). (22)

k!
i+k

- (0 <i<n0<k< m), it is easy to make sure that they are all

Sufficiency. When calculating directly

continuous in 2, and

an+m 2f X Yy
Ty = [ Jolt, dtds+jw dt+_[n s)ds +
+

(23)
(n 1) (m _1) Cham--
n+m-2
Obviously ﬁ € AC( ) from where it follows f(X, y) € ACn’m(f_Z).
The theorem is proven completely.
Notice, that
o(x, y)=f""(xy); @9
v (x)= f™)(x,c), k=0,m-1; (25)
n(y)=f""(ay), i=0,n-1; (26)
1 ¢
Cik = m f ( ’k)(a, C). (27)
Definition 5 [1, c. 459]. Let f(X y) Li(Q) The integral
t dtd
( a+ c+ f XX y J j S > (28)

B H
a c )
where o, > 0, ﬁ > 0, is called a left-hand sided mixed Riemann-Liouville fractional integral of order (OL, B)
The fractional integral (28) is obviously defined on functions f (X, y) € Ll(Q) existing almost everywhere.
Using the Fubini theorem, the semigroup property is proved.

Let f(X, y)e LI(Q) Qa, B y,8 be positive numbers, then equality holds almost everywhere in Q
I BT T Bt i (29)

a+,c+ " a+,C+ a+,C+

It can be shown that if ot > O function f (X, y) is defined in €2 and f (X, y) € Ll(Q) then
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(12, x y)e L(le.d]) wxe(ab): (15, )x y)eL(ab]) vye(c.d).

In the last equations I:+,x f , |§+‘y f are partial Riemann — Liouville fractional integrals with respect to the variables

X and VY, respectively.
Taking these equalities into account, it is directly verified that

(12,02, £ y) =08 12 1) y) = (122, £ X, y) (20)
Definition 6 [1, c. 460]. For function f (X, y), given on Q) formula
1 oM ¢ f(t,s)dtds
f
( a+ c+ XX y (n _ OL)F(m _ B) axnaym _[ ( _ t)oc—n+1(y _ S)B—m+1 (31)

where OL>0,B>O , is called a mixed Riemann-Liouville  fractional  derivative  of  order

(o, B), n=[a]+1, m=[B]+1.

If the function f (X y) has a property |
does not matter, and

m-p f e AC" m( ) then the order of taking the derivatives in (31)

a+, C+

(D22, fXx, y)e L(@).

Definition 7 is a two-dimensional analogue of Definition 2.3 [1, p. 43].

COMPOSITIONS OF MIXED FRACTIONAL INTEGRAL AND MIXED FRACTIONAL DERIVATIVE OF
THE SAME ORDER
Following [1, p. 44], we define the following classes of functions.

Definition 7. Let |a+ c+(L1) denote the space of function f (X, y), represented by the left-sided mixed fractional

integral of order (oL, B) of a summable function: f = |a+ 0, peL(Q).
Definition 8. Let 0 < o <1 0< B <1. A function f(X, y)e Li(Q) is said to have a summable fractional
derivative D*P f it |7 P ACnm(Q).

a+,C+ a+,C+

The following theorem defines the necessary and sufficient condition for the unique solvability of the two-dimensional
Abel integral equation.

Theorem 1. In order that f (X, y) ¢ B (Li), o >0, B> 0, itis necessary and sufficient that

fH,me e AC""(Q), (32)
where N = [OL] +1, m= [B] +1, and that
fn( a)m B(a y)E ) i=0,n—1; (33)
fn(f);'f,L_B (x, c) =0, k=0,m-1; (34)
fio (ac)=0, i=0,n-1 k=0,m-L1. (35)
Proof. Necessity. Let T = Iaqu)’ Qe Ll(Q) In view of the semigroup property
fnfoz,mfﬁ (X’ y) I:+((x;+m P f a+ c+(P (36)

where € Li(Q) From here follow feasibility conditions (33) — (35). Feasibility condition (32) follow from Lemma 4.
This implies the fulfillment of conditions (33) - (35). The fulfillment of condition (32) follows from Lemma 4.
Sufficiency. Under condition (32), we can present f m-p according to Lemma 3, in the form

m 1|.Tj/‘ nam;(tgmdtds+

n-1 f (i,0) m-1 f(Ok) ,
+Z n—o., m— B(a y)(x_a)l + n—a,m—B(X C)(

fn—oc,m—B (X’ Y) = (
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n-1 m-1 f(i'k) (a' C)

-y > (x—a) (y—c) 37)

i=0 k=0 kl
where f e I—1( ) Taking into account conditions (33) —(35),the last equality is written in the form
s (t,S)
f (x,y)= '[ _[ fiin B dtds (38)
n—-o,m— ! —-m '
(n- 1 (m-1)! "(y-s)
Using the semigroup property (29), we can wrlte
n—a,m-B n,m (n,m) n—o,m-B y o, n,m)
Ia+c+ f _Ia+c+fn —a,m— Ia+c+ Ia+c+fn —a,m-B - (39)
From here |2+Oéf1 B(f |:+Bc+ fn(n(xmm B) 0. Applying the integral to this equality |a+ oy » We get
n,m a.B (n,m) h _
Ia+ c+(f Ia+ C+ fn —o,m— Xdy_ O (40)
Fromhere f = |:+BC+ fn am g fn(nmmm 5 € Ll( ) The theorem is proved.

Note that Theorem 1 is a generalization of Theorem 2.3 [1, p. 43] in the case of two variables. From it, in particular, it

follows that the class of functions having a summable fractional derivative (Dafw f in the sense of Definition 8 is wider than

the class of functions | c+(L1) Namely, the class " c+(L1) owns only those functions that have a summable fractional
derivative (Da+ ., T, for which equalities (33) - (35) hold.
Theorem 2. Let OL > 0, B > 0. Then equality
1 —
Dyl Nkt =1(xy) (a1)

performed for any summable function f (X, y).
Proof. We have

an+m
aB Ia[} f Inamﬁlocﬁ f

a+ C+ a+,c+ axnaym a+,c+ a+,c+
1 o™ T dtds ©o dudv
" T(a)rB)(n— o) (m—p) ox" ay'“£ I ﬁ! j s—v)"" (42)
Changing the order of integration, we get
D 9P f = 1
a+c+ a+,c+ X
[(e)r()r(n - o)r(m—p)
o ot 0l dtds
f u,v)dudv =
<oy | 1y 5 ER PR T e
8n+m Xy X dt 1
= f u, v dudv
ox" ayml I — o) !(x—t i t—u)““* r)r(m-p)"
y dS 1 an+m X Yy )
= dudv=
Xg(y—S)ﬁ(S—V)mB r(n)r(m) ox" 6ym£ j (x- ul” (y—v)™
= f(X7 y), (43)
Q.E.D.
Theorem 3. For any function f(X y) |§+ﬁc+(L1)the equality
1 off f = f(xy), (44)

and for any function that has a summable derivative @a+ o f (in the sense of definition 8), the equality
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| &P b f_f( ) nzl( )allf(nl—lo(a Y) ml( )Bkl 0mk1)(xc)+
a+,c+ “a+,c+ — F( ) n-a,0 — F( _ ) 0,m-p3 '

n-1 m-1 p-k-1
+ Z (X a) (y C) f(n—i—l,m—k—l)(a’c),

om- (45)
T To-ire-k)
where f, (X y): |a+50+f.
Proof. Let f( ) |:+ﬁc+(L1) then f(X y) a P Q. (p(X y) I—1( ) Based on Theorem 2, we have
I:+BC+®:+ﬁC+f = I:+BC+@:+BC+Ia+ C+(P a+ C+(P = f(X y) (46)
Let now Ia+aci Pf e AC( ) According to Lemma 3, the integral f_ B(X y) et P£ can be represented as

_1f|0 mlfok

Framlion) =125, 1000 5 @y $E roma0)y oy

a+,c+ " n-o,m—B

n-1 m-1 f (i'k) a.c .
oL M= y k
- toem PR 7 “'m"?f )( —a)(y—-c). (@)
i=0 k=0 kli!
By the semigroup property, the equality
nm £ (nm) n—o,m-By o.p n,m)
Ia+c+fn —o,m-B Ia+c+ Ia+c+fn —a,m—3 * (48)

Further,

(x-a) (0 (ay)- lnf““'{q)““(X_"")i o) (a,y)]+

|! n—o,,m— a+,c+ a+,X || c+,Yy n—o,m-f
(X _ a)i (y . C)m—B—l (0) . (X _ a)i—n+a i
f | o f0 (a,
+ ||F(m—B) n— al(a C) a+,c+ (1+i-n+0() nfa,o(a y) +
(x=a)'(y=¢)""" (o)
Fr (m—p) f"% (a,c). (49)

From the last equality it follows that

n-1 f (i,0) (a y) n—1 (X_a)i—n+a .
namﬁ ' _ |”0lml3 f(|,0)
; |! (X a) a+,c+ (ZO 1_,(1+ | n4+ a) n_ayo(a, y) +
n-1 (X _ a)i (y . C)m—[’)—l i (.0
= ir(m-p) "

from where, redesignating the summation index, we get

2 e ?(a, Y —a) = 1rams _nzlwf(”‘f‘l’”(a, Y)J+

+ (a,c), (50)

a+,C+

G-l (y—cf o
+ > ia!ll“ (?; _;) f0 (ac).

Equality is obtained similarly

m-1 B-k-1
- —c) = |rom-p (y - C) £ (O.mk-1) ’
— il y C) a+,c+ (ko 1_,(B _ k) 0,m—p (X C) +
m—1 _ n-o-1
i (X a) (y C) fl r?]kg (a’ C). 2

oy k'F(n a)
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It is not difficult to see that

§* $* Bhemnl@)(_ayy o) -

n—a,m- o= n—o,m- X_ai y_ck
= Ia+,c+ B[Z Ia+,c+ B(( I)'(kl ) jfn( a)m B(a C)j

:”“m{IZEQ ?HT%C%“ﬂ&#?”ﬁxﬂ

Taking into account equalities (48), (51) - (53), equality (47) is written in the form

n—1 4ol .
In o,m— Bf In o,m— Blaﬁ ®0L[3 f+|n o,m-B Z(X a) f(nalol,O)(a’y)J_i_

a+,c+ a+,c+ a+,c+ ~a+,c+ a+,c+ . n-a,
i=0 INo—1

(83)

- e o €O oy ]
; i'm(m-p) foa@ o)+ 1 Zﬁ r(p-k) fomty' )]
+EZ:( kl)ln“((; (i)c) fin's(@.0)-

n-1 :1 -1 a-i-1 p-k-1
i B(O ZO(X r?) )(V(B CL) fé“w‘ml'z’“)(a,c)} 54

By grouping the terms, we get

n _ a)\e-i-l _
In o,m— B[f Iaﬁ Q)aﬁ f _Z(X a) f(n—l—l,O)(a’ y)_

a+,C+ a+,c+ —~a+,Cc+ — F(OL _ I) n-o,0

S ( )B “ £ (Om—k-1) SRS 1(X a)OL i71()’—(5)54(7l (n—i-1,m—k-1) }
e X,C)+ - foo a,c)|=
2ot e R g e
G x—a) (y—c)""" L) Cy—c)(x-a)™" op
= fo(a, frmsl@,
Z(): I I F(m k) n—a,l(a C)+k_0 kl F(n (X) 1, m-B (a C) (55)
In the right-hand side of equality (55), under the integral is a summable function. Applying the operator |a+ﬁC+ to both parts of

equality (55), we obtain

o—i-1
Inm (f_lonﬁ @(XB f_Z(X_a) f(n;ial,O)(a’y)_

a+,c+ a+,c+ ~a+,c+ - n—a,
i=0 F( _I)

'S 1( )B - Om-k-1)(y o) 4 oot (x - a)“ ! 1(y C)B “ n—i-Lm—k-1) (5 ) | =

Sl o § O o)

_ n- (X _ a)l+(x(y _ C)m— f( 0 (a C)+ 1(y C)k+[3 (X _ a)nfl f(O,k)
= Ii+a+1)r(m) " & T(k+1+p)r(n) *m°

Under the integral on the left side of the equality is the summable function, and the right side of the equality is absolutely
n+m

y

(a,c). s6)

continuous. Finding the mixed derivative - of both parts of the equality, we get

n

OX
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f—1

. . n1(y_gq o—i-1 i m-1(y_c B-k-1 L
aJ’r[?c+Dafc+f _Z% fn(fa,OLO)(a’ y)_|§)(y1“([3—)—k) fo(,on'qn_]ﬁk 1)(X,C)+

=0
SAS (X - a)a—i—l(y - C)B_k_l (n—i-1,m—k-1) _
i=0 k=0 F(OL - I)F(B _ k) fn—a,m—[} (a, C) =0.

(57)

The theorem is proved.
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