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Abstract: As is known, the Riemann-Liouville fractional integration operator establishes an isomorphism between Hölder spaces for functions 

one variables. We study mixed Riemann-Liouville fractional integration operats and mixed fractional derivative in Marchaud form of function of 

two variables in Hölder spaces of different orders in each variables. The obtained results extend the well known theorem of  Hardy-Littlewood 

for one-dimensuianl fractional integrals to the case of mixed Hölderness. 
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INTRODUCTION  

The classical result of G.Hardi and D.Littlewood (1928, see [1, §3]) is known that the fractional integral 
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   xftxfIa maps isomorphically the space  ]1,0[0
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of Hölder order  1,0

 
functions 

with a condition   00 f on a similar space of a higher order    provided that 1 . Further, this result was 

generalized in various directions: a space with a power weight, generalized Hölder spaces, spaces of the Nikolsky type, etc. A 

detailed review of these and some other similar results can be found in [1]. 

In the multidimensional case, the statement about the properties of a map in Hölder spaces for a mixed fractional 

Riemann – Liouville integral was studied in [2] - [6]. 
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Mixed fractional derivatives form Marchaud ([7]-[9]) 
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where 0,0  yx , were not studied either in the usual Hölder space, or in the Hölder spaces defined by mixed differences. 

Meanwhile, there arise “points of interest” related to the investigation of the above mixed differences of fractional derivatives 

form Marchaud. For operators (1) in Hölder spaces of mixed order there arise some questions to be answered in relation to the 

usage of these or those differences in the definition of Hölder spaces. Such mapping properties in Hölder spaces of mixed order 

were not studied. This paper is aimed to fill in this gap. We deal with non-weighted spaces. 

Consider the operator (1) in a rectangle   dybxyxQ  0,0:, . 

For a continuous function ),( yx  on 
2R  we introduce the notation  
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Everywhere in the sequel by 
21,, CCC  etc we denote positive constants which may different values in different 

occurences and even in the same line. 

Definition 1. Let ]1,0(,  . We say that  QH  ,
, if 
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 2122112211 ,, yyCxxCyxyx    (4) 

for all     Qyxyx 2211 ,,, . Condition (4) is equivalent to the couple of the separate conditions 
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uniform with respect to another variable. 

By  QH  ,

0  we define a subspace of functions  QHf  ,

0 , vanishing at the boundaries 0x  and 0y of Q.  
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 and 
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 Definition 2. We say that    QHyx  ,~
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We say that    QHyx  ,
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,  and   0, 0,0   yxyx . 

 These spaces become Banach spaces under the standard definition of the 
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where  stands for the continuous embedding, and the norm for 
   QH 



1,

10

~
  is introduced as the maximum in   of 

norms for 
   QH  1,~

. Since ]1,0[  is arbitarary, it is not hard to see that  the inequality in (6) is equivalent to  
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MAPPING PROPERTIES OF THE MIXED FRACTIONAL INTEGRATION OPERATOR IN HÖLDER SPACES  

Theorem 1. Let    QHyx  ,,  , 1,0   , 1,0   . Then for the mixed fractional integral operator (1) 

the representation  
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Proof. Representation (9) itself is easily obtained by means of (3). Since  QH  ,
, inequalities (10) are obvious. 

Estimate (11) is obtained by means of (6) and (8).  

 Theorem 2. Let 1,0  . Then the mixed fractional integral operator 




,

0,0I  is bounded from  QH  ,

0  into 
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for brevity. Note that 
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for 
 ,

0H , but we prefer to keep the notetion for  yxg ,  via the mixed difference as in (12). By (6) we have 
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Since ]1,0[ , we make use of (13) with 1  and obtain 

    ChxhxСx1 . 

For 2  in view of (6), we have 
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and then 
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For 3  by (15) and (6) we obtain 
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.  

Gathering the estimates 321 ,,   we obtain 

     hCyxyhx 1,, .     

Rearranging symmetrically representation (14), we can similarly obtain that 
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     2,, Cyxyx .     

Which proves the theorem. 

 Theorem 3. The mixed fractional integral operator 
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 yx,  is the function from (9). the main moment in the estimations is to find the corresponding splitting which allows to derive 
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where ;0, h  ],0[,],,0[, dyybhxx   and  yxg ,  is the function from (12). The validity of this representation 

may be be chacked directly. 
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after which every term is estimated in the standard way, and we get 
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This completes the proof. 

 

MAPPING PROPERTIES OF THE MIXED FRACTIONAL DIFFERENTIATION OPERATOR IN HÖLDER SPACES  
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Proof.  Representation (19) itself is easily obtained by means of (3). Since  QHf  ,
, inequalities (2) are obvious. 

Estimate (21) is obtained by means of (6) and (8). 

Theorem 5. Let     1,1,, ,

0   QHyxf . Then the operator
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