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Abstract
Let G be a connected simple graph. A set S of vertices of a graph G is an outer-convex dominating

set if every vertex not in S is adjacent to some vertex in S and V (G) \ S is a convex set. In this paper we
characterize the outer-convex dominating sets in the composition and Cartesian product of two connected
graphs. It is shown that the outer-convex domination number of a composition G[H] of two connected
graphs G = Pm (m ≥ 3) and H = Kn (n ≥ 2) is equal to 2 if m = 3 and n(m − 4) + 2 if m > 3. The
outer-convex domination number of the Cartesian product G�H of two non-complete connected graphs
G and H depends on the outer-convex domination number of G and H.
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1 Introduction

The theory of domination is an area in graph theory with numerous research activities. More than 1,222
papers and 75 variations of domination parameters were presented and published on this area [1].Studies
on this field have been growing rapidly due to its varieties of domination parameters and wide applications.
This made the essential part to the researchers’ motivation in conducting a research to this particular field.
One of the domination parameter is outer-convex domination which was introduced by Dayap and Enriquez
in 2017 [2]. In [2], the authors characterized the outer-convex domination in the join of two graphs and
outer-convex domination numbers 1 and 2. In this paper, the researchers characterize the outer-convex
domination resulting from some binary operations: composition and Cartesian product. As consequences, we
determine the outer-convex domination number of these graphs.

Let G be a simple connected graph. A subset S of a vertex set V (G) is a dominating set of G if for every
vertex v ∈ V (G)\S, there exists a vertex x ∈ S such that xv is an edge of G. The domination number γ(G)
of G is the smallest cardinality of a dominating set S of G. Dominating sets have several applications in a
variety of fields, including communication and electrical networks, protection and location strategies, data
structures and others. For more background on dominating sets, the reader may refer to [3]. Domination in
graph was introduced by Claude Berge in 1958 and Oystein Ore in 1962 [4].

A graph G is connected if there is at least one path that connects every two vertices x, y ∈ V (G), otherwise,
G is disconnected. For any two vertices u and v in a connected graph, the distance dG(u, v) between u and v
is the length of a shortest path in G. A u-v path of length dG(u, v) is also referred to as u-v geodesic. The
closed interval IG[u, v] consists of all those vertices lying on a u-v geodesic in G. For a subset S of vertices
of G, the union of all sets IG[u, v] for u, v ∈ S is denoted by IG[S]. Hence x ∈ IG[S] if and only if x lies on
some u-v geodesic, where u, v ∈ S. A set S is convex if IG[S] = S. Certainly, if G is connected graph, then
V (G) is convex. Convexity in graphs was studied in [5, 6, 7].

A dominating set S, which is also convex, is called a convex dominating set of G. The convex domination
number γcon(G) of G is the smallest cardinality of a convex dominating set of G. A convex dominating set of
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cardinality γcon(G) is called a γcon-set of G. Convex domination in graphs was studied in [8, 9, 10]. A set S
of vertices of a graph G is an outer-connected dominating set if every vertex not in S is adjacent to some
vertex in S and the sub-graph induced by V (G) \ S is connected. The outer-connected domination number
γ̃c(G) is the minimum cardinality of the outer-connected dominating set S of a graph G. The concept of
outer-connected domination in graphs was introduced by Cyman [11]. Other variations on outer-connected
domination were defined and characterized in [12, 13, 14, 15].

A set S of vertices of a graph G is an outer-convex dominating set if every vertex not in S is adjacent to
some vertex in S and V (G) \ S is convex. The outer-convex domination number of G, denoted by γcon(G),˜
is the minimum cardinality of an outer-convex dominating set of G. An outer-convex dominating set of
cardinality γcon(G) will be called an˜ γ̃con-set. This concept was defined in [2] and further investigated as a
new variation in [16].

For general concepts we refer the reader to [17].

2 Outer-convex Domination in the Composition of Graphs
The composition of two graphs G and H is the graph G[H] with vertex-set V (G[H]) = V (G)× V (H) and
edge-set E(G[H]) satisfying the following conditions: (x, u)(y, v) ∈ E(G[H]) if and only if either xy ∈ E(G)
or x = y and uv ∈ E(H).

Note that a non-empty subset C of V (G[H]) = V (G)×V (H) can be written as C =
⋃

x∈S

({x}×Tx), where

S ⊆ V (G) and Tx ⊆ V (H) for every x ∈ S. In the following results, we shall be using this form to denote
any non-empty subset C of V (G[H]).

The following result is due to Canoy and Garces [7]

Theorem 2.1 Let G be a connected graph and Kn the complete graph of order n. A subset C =
⋃

x∈S

({x}×Tx)

of V (G[Kn]), where S ⊆ V (G) and Tx ⊆ V (Kn) for every x ∈ S, is convex in G[Kn] if and only if S is
convex in G.

The next result is due to Labendia and Canoy [10]

Theorem 2.2 Let G be a connected graph and Kn the complete graph of order n ≥ 2. A subset C =⋃
x∈S

({x} × Tx), is a convex dominating set in G[Kn] if and only if S is a convex dominating set in G.

The next result characterizes the outer convex dominating sets in G[Kn].

Theorem 2.3 Let G be a connected non-complete graph and Kn be a complete graph of order n ≥ 2. A

subset C =

 ⋃
x∈S\S′

({x} × V (Kn))

∪ ⋃
x∈S′

({x} × Tx)
)
, is an outer convex dominating set of G[Kn], where

S ⊆ V (G), Tx ⊆ V (Kn) for every x ∈ S, and S′ = {x ∈ S : xy ∈ E(G), for some y /∈ S} if and only if S is
a dominating set and V (G) \ S is a convex set of G and one of the following is satisfied.

(i) S = S′ and Tx = V (Kn) for all x ∈ S.

(ii) S 6= S′ and Tx ⊂ V (Kn).

Proof : Suppose that C =

 ⋃
x∈S\S′

({x} × V (Kn))

 ∪ ⋃
x∈S′

({x} × Tx)
)
, is an outer convex dominating set

of G[Kn], S ⊆ V (G), Tx ⊆ V (Kn) for every x ∈ S, and S′ = {x ∈ S : xy ∈ E(G), for some y /∈ S}. Then C
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is a dominating set and V (G[Kn]) \ C is a convex set of G[Kn]. Write, V (G[Kn]) \ C

= [V (G)× V (Kn)] \

 ⋃
x∈S\S′

({x} × V (Kn))

 ∪ ⋃
x∈S′

({x} × Tx)
)

= [V (G)× V (Kn)] \ ([(S \ S′)× V (Kn)] ∪ [S′ × Tx])
= [V (G)× V (Kn)] \ ([(S × V (Kn)) \ (S′ × V (Kn))] ∪ (S′ × Tx))
= [(V (G) \ S)× V (Kn)] ∪ [(S′ × V (Kn) \ Tx)]

=

 ⋃
x∈V (G)\S

({x} × V (Kn))

 ∪ ⋃
x∈S′

({x} × V (Kn) \ Tx)
)

Since V (G[Kn]) \ C is a convex set of G[Kn],

 ⋃
x∈V (G)\S

({x} × V (Kn))

 ∪ ⋃
x∈S′

({x} × V (Kn) \ Tx)
)

is convex.

By computation, it can be verified that

 ⋃
x∈V (G)\S

({x} × V (Kn))

 is also convex set of G[Kn]. Thus,

V (G) \ S is convex by Theorem 2.1. Now, let (x, y) ∈ V (G[Kn]) \ C. Since C is a dominating set of G[Kn],
there exists (x′, y′) ∈ C such that (x, y)(x′, y′) ∈ E(G[Kn]). To show that S is dominating, we may consider
only that (x, y) ∈ (V (G) \ S)× V (Kn). Then x ∈ V (G) \ S and x 6= x′, that is, xx′ ∈ E(G). Thus, for all
x ∈ V (G) \ S, there exists x′ ∈ S such that xx′ ∈ E(G), that is, S is a dominating set in G. Since S′ ⊆ S,
consider first that S′ = S. Then

C =

 ⋃
x∈S\S′

({x} × V (Kn))

 ∪ ⋃
x∈S′

({x} × Tx)
)

=
⋃

x∈S

({x} × Tx)
)

= S × Tx for all x ∈ S.

Suppose that Tx 6= V (Kn), then there exists y ∈ V (Kn) \ Tx for all x ∈ S such that (x, y) /∈ C, that is,
(x, y) ∈ V (G[Kn]) \ C. Let (x1, y), (x2, y), (x3, y) ∈ V (G[Kn]) \ C. Since V (G[Kn]) \ C is convex, the path
(x1, y)-(x3, y) is an (x1, y)-(x3, y) geodesic. Suppose (x1, y)(x2, y), (x2, y)(x3, y) ∈ E(G[Kn]). Then there
exists y′ ∈ Tx for all x ∈ S such that (x1, y)(x2, y

′), (x2, y
′)(x3, y) ∈ E(G[Kn]). Since (x2, y

′) lies on (x1, y)-
(x3, y) geodesic, (x2, y

′) ∈ IG[Kn][V (G[Kn]) \C]. But (x2, y
′) /∈ V (G[Kn]) \C. Thus IG[Kn][V (G[Kn]) \C] 6=

V (G[Kn]) \ C, and so, V (G[Kn]) \ C is not convex contrary to our assumption. Therefore, Tx = V (Kn),.
This proves statement (i). Next, if S′ 6= S, then Tx 6= V (Kn), (otherwise S′ = S). This proves statement (ii).

For the converse, suppose that S is a dominating set and V (G) \ S is a convex set of G and statement

(i) or statement (ii) is satisfied. Let C =

 ⋃
x∈S\S′

({x} × V (Kn))

 ∪ ⋃
x∈S′

({x} × Tx)
)
, where S ⊆ V (G),

Tx ⊆ V (Kn) for every x ∈ S, and S′ = {x ∈ S : xy ∈ E(G), for some y /∈ S}. Now, we will show C is an
outer-convex dominating set of G[Kn]. Consider first that statement (i) holds. Then S = S′ and Tx = V (Kn)
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for all x ∈ S, and so,

C =

 ⋃
x∈S\S′

({x} × V (Kn))

 ∪ ⋃
x∈S′

({x} × Tx)
)

=
⋃

x∈S′

({x} × Tx)
)

=
⋃

x∈S

({x} × V (Kn))
)

= S × V (Kn).

Since S is dominating set of G, there exists x′ ∈ S such that xx′ ∈ E(G) for all x ∈ V (G) \ S. Thus, there
exist (x′, y′) ∈ C such that (x, y)(x′, y′) ∈ E(G[Kn]) for all (x, y) ∈ V (G[Kn]) \C, that is, C is a dominating
set of G[Kn]. Now,

V (G[Kn]) \ C = [V (G)× V (Kn)] \ [S × V (Kn)]
= (V (G) \ S)× V (Kn)
=

⋃
x∈V (G)\S

({x} × V (Kn)).

Since V (G) \ S is a convex set in G,
⋃

x∈V (G)\S

({x} × V (Kn)) is a convex set in G[Kn] by Theorem 2.1. Thus,

V (G[Kn]) \ C is convex in G[Kn]. Accordingly, C is an outer-convex dominating set in G[Kn].
Next, consider that statement (ii) holds. Then

C =

 ⋃
x∈S\S′

({x} × V (Kn))

 ∪ ⋃
x∈S′

({x} × Tx)
)

where Tx 6= V (Kn).

Since S is dominating set of G, C is a dominating set of G[Kn] by similar arguments used in the proof of (i).
Now,

V (G[Kn]) \ C = [V (G)× V (Kn)] \ [
⋃

x∈S\S′

({x} × V (Kn)) ∪
⋃

x∈S′

({x} × Tx)]

= [V (G)× V (Kn)] \ [((S \ S′)× V (Kn)) ∪ (S′ × Tx)]
= [(V (G) \ S)× V (Kn)] ∪ [S′ × (V (Kn) \ Tx)]
= [

⋃
x∈V (G)\S

({x} × V (Kn))] ∪ [
⋃

x∈S′

({x} × Tx)].

Since V (G) \ S is a convex set in G,
⋃

x∈V (G)\S

({x} × V (Kn)) is a convex set in G[Kn] by Theorem 2.1. By

computation, it can be shown that

[
⋃

x∈V (G)\S

({x} × V (Kn))] ∪ [
⋃
S′

({x} × Tx)]

is also convex set in G[Kn]. Thus, V (G[Kn]) \ C is convex in G[Kn]. Accordingly, C is an outer-convex
dominating set in G[Kn]. �

The next result is a quick consequence of Theorem 2.3.

Corollary 2.4 Let G = Pm and H = Kn with m ≥ 3 and n ≥ 2. Then

γ̃con(G[H]) =
{

2, if m = 3
n(m− 4) + 2, if m > 3
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Proof : Suppose that S is a dominating set and V (G)\S is a convex set ofG. Let C =

 ⋃
x∈S\S′

({x} × V (H))

∪
⋃

x∈S′

({x} × Tx)
)
, and consider |Tx| = 1 for every x ∈ S′, and S′ = {x ∈ S : xy ∈ E(G), for some y /∈ S}.

Then C is an outer-convex dominating set of G[H] by Theorem 2.3. Thus,

γcon(G[H]) ≤ |C|˜
=

∣∣∣∣∣∣∣∣∣
 ⋃

x∈S\S′

({x} × V (H))

 ∪ ⋃
x∈S′

({x} × Tx)
)∣∣∣∣∣∣∣∣∣

= |((S \ S′)× V (H)) ∪ (S′ × Tx)|,∀x ∈ S′

= (|S| − |S′|) · |V (H)|+ (|S′| · |Tx|),∀x ∈ S′

Since V (G)\S is convex set and S is a dominating set ofG = Pm≥3, it follows that |V (G)\S| = |V (G)|−|S| ≤ 2,
that is, |S| ≥ |V (G)| − 2 = m− 2. This implies that |S| = 2 if m = 3, and |S| = m− 2 if m > 3. Further,
since S′ = {x ∈ S : xy ∈ E(G), for some y /∈ S}, it can be readily seen that |S′| = 2. Thus, if m = 3, then
|S| = 2 = |S′| and so

γcon(G[H]) ≤ (|S| − |S′|) · |V (H)|+ (|S′| · |Tx|),∀x ∈ S′˜
= (2− 2) · n+ (2 · 1)
= 2.

if m > 3, then |S| = m− 2 and so

γcon(G[H]) ≤ (|S| − |S′|) · |V (H)|+ (|S′| · |Tx|),∀x ∈ S′˜
= (m− 2− 2) · n+ (2 · 1)
= n(m− 4) + 2.

Thus,

γ̃con(G[H]) ≤
{

2, if m = 3
n(m− 4) + 2, if m > 3, inequality (1)

Suppose Co is a γcon-set in G[H]. Then there exists |T o
x | for all x ∈ S′ such that˜

γ̃con(G[H]) = |Co|

=

∣∣∣∣∣∣∣∣∣
 ⋃

x∈So\So′

({x} × V (H))

 ∪
 ⋃

x∈So′

({x} × T o
x )

∣∣∣∣∣∣∣∣∣
= |((So \ So′

)× V (H)) ∪ (So′
× T o

x )|,∀x ∈ So′

= (|So| − |So′
|) · |V (H)|+ (|So′

| · |T o
x |),∀x ∈ So′

if m = 3, then |So| = 2 = |So′ | and so

γ̃con(G[H]) = (|S| − |So′
|) · |V (H)|+ (|So′

| · |Tx|),∀x ∈ So′

≥ (2− 2) · n+ (2 · 1)
= 2.

if m > 3, then |S| = m− 2 and so

γ̃con(G[H]) = (|S| − |So′
|) · |V (H)|+ (|So′

| · |Tx|),∀x ∈ So′

≥ (m− 2− 2) · n+ (2 · 1)
= n(m− 4) + 2.
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Thus,

γ̃con(G[H]) ≥
{

2, if m = 3
n(m− 4) + 2, if m > 3, inequality (2)

Therefore, by combining inequalities (1) and (2), we obtain the desired results. �

3 Outer-convex Domination in the Cartesian Product of Graphs
The Cartesian product of two graphs G and H is the graph G�H with vertex-set V (G�H) = V (G)× V (H)
and edge-set E(G�H) satisfying the following conditions: (x, a)(y, b) ∈ E(G�H) if and only if either
xy ∈ E(G) and a = b or x = y and ab ∈ E(H).

The next results are due to Labendia and Canoy [10]

Theorem 3.1 [10] Let G and H be connected graphs. A subset C of V (G×H) is a convex dominating set
in G×H if and only if C = C1 × C2 and

(i) C1 is a convex dominating set in G and C2 = V (H), or

(ii) C2 is a convex dominating set in H and C1 = V (G).

Corollary 3.2 [10] Let G and H be connected graphs of orders m and n respectively. Then γcon(G�H) =
min{mγcon(H), nγcon(G)}.

The following result is the characterization of an outer-convex dominating set of G�H.

Theorem 3.3 Let G and H be connected non-complete graphs. A subset C is an outer-convex dominating
set of G�H if and only if

(i) C =
⋃
v∈S

[{v} × V (H)], where S is an outer-convex dominating set of G; or

(ii) C =
⋃

v∈V (G)

[{v} × Tv], where Tv is an outer-convex dominating set of H for each v ∈ V (G).

Proof : Suppose that C is an outer-convex dominating set of G�H. Then V (G�H) \ C is convex and C is a
dominating set of G�H. Consider the following cases.

Case1: If V (G�H) \ C is dominating, then V (G�H) \ C = (V (G) \ S) × V (H) where V (G) \ S is a
convex dominating set in G and Tv = V (H), for all v ∈ S, by Theorem 3.1(i). This implies that

C = V (G�H) \ [(V (G) \ S)× V (H)]
= [V (G)× V (H)] \ [(V (G) \ S)× V (H)]
= [V (G) \ (V (G) \ S)]× V (H)
= S × V (H).

Since C is a dominating set of G�H, S must be a dominating set of G and hence S an outer-convex
dominating set of G (since V (G) \ S is convex). Thus, C = S × V (H) =

⋃
v∈S

[{v} × V (H)], where S is an

outer-convex dominating set of G.
Case2: If V (G�H) \ C is not dominating, then V (G�H) \ C = (V (G) \ S)× V (H) where V (G) \ S is a

convex set in G and Tv = V (H), for all v ∈ S. This implies that

C = V (G�H) \ [(V (G) \ S)× V (H)]
= [V (G)× V (H)] \ [(V (G) \ S)× V (H)]
= [V (G) \ (V (G) \ S)]× V (H)
= S × V (H).
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By similar arguments used in Case1, C = S×V (H) =
⋃
v∈S

[{v}×V (H)], where S is an outer-convex dominating

set of G. This proves statement (i).
Further, since V (G�H) \ C is convex, consider the following cases.
Case1: If V (G�H) \ C is dominating, then V (G�H) \ C = V (G)× [V (H) \ Tv] where S = V (G) and

V (H) \ Tv, is a convex dominating set in H for all v ∈ S, by Theorem 3.1(ii). This implies that

C = [V (G)× V (H)] \ (V (G)× [V (H) \ Tv]) for all v ∈ S
= V (G)× Tv for all v ∈ S.

Since C is a dominating set of G�H, Tv must be a dominating set of H for each v ∈ S and hence Tv an
outer-convex dominating set of H (since V (H) \ Tv is convex). Thus, C = V (G)× Tv =

⋃
v∈V (G)

[{v} × Tv],

where Tv is an outer-convex dominating set of H for each v ∈ V (G).
Case2: If V (G�H) \ C is not dominating, then V (G�H) \ C = V (G) × [V (H) \ Tv] where S = V (G)

and V (H) \ Tv, is a convex set in H for all v ∈ S. This implies that

C = [V (G)× V (H)] \ (V (G)× [V (H) \ Tv]) for all v ∈ S
= V (G)× Tv for all v ∈ S.

By similar arguments used in Case1, C = V (G) × Tv =
⋃

v∈V (G)

[{v} × Tv], where Tv is an outer-convex

dominating set of H for each v ∈ V (G). This proves statement (ii).

For the converse, suppose that statement (i) is satisfied. Then, C =
⋃
v∈S

[{v} × V (H)] = S × V (H). Since

S is a dominating set of G, it follows that C is a dominating set of G�H. Now,

V (G�H) \ C = [V (G)× V (H)] \ [
v∈S

{v} × V (H)]
⋃

= [V (G)× V (H)] \ [S × V (H)]
= [V (G) \ S]× V (H)

Since S is an outer-convex dominating set of G, it follows that V (G) \ S is convex. Thus, [V (G) \ S]× V (H)
is convex, that is, V (G�H) \ C is convex. Accordingly, C is an an outer-convex dominating set of G�H.

Suppose that statement (ii) is satisfied. Then, C =
⋃

v∈V (G)

[{v} × Tv] = V (G)× Tv for all v ∈ V (G). Since

Tv is a dominating set of H for each v ∈ V (G), it follows that C is a dominating set of G�H. Now,

V (G�H) \ C = [V (G)× V (H)] \ [
v∈V (G)

{v} × Tv]
⋃

= [V (G)× V (H)] \ [V (G)× Tv] for all v ∈ V (G)
= V (G)× [V (H) \ Tv] for all v ∈ V (G).

Since Tv is an outer-convex dominating set of H for all v ∈ V (G), it follows that V (H) \ Tv is convex. Thus,
V (G) × [V (H) \ Tv] for all v ∈ V (G) is convex, that is, V (G�H) \ C is convex. Accordingly, C is an an
outer-convex dominating set of G�H. �

The following result is an immediate consequence of Theorem 3.3

Corollary 3.4 Let G and H be connected non-complete graphs.

γcon(G�H) = min{˜ γcon(G)× |V (H)|, |V (G)| ×˜ γ̃con(H)}.
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Proof : Suppose that C =
⋃
v∈S

[{v} × V (H)], where S is an outer-convex dominating set of G. Then C is an

outer-convex dominating set of G�H by Theorem 3.3(i). Thus,

γ̃con(G�H) ≤ |C|
= |

⋃
v∈S

[{v} × V (H)]|

= |S × V (H)|
= |S| · |V (H)| for all outer-convex S of G
= γ̃con(G) · |V (H)|, inequality (1).

Further, suppose that C =
⋃

v∈V (G)

[{v} × Tv], where Tv is an outer-convex dominating set of H for each

v ∈ V (G). Then C is an outer-convex dominating set of G�H by Theorem 3.3(ii). Thus,

γ̃con(G�H) ≤ |C|
= |

⋃
v∈V (G)

[{v} × Tv]|

= |V (G)× Tv| for all v ∈ V (G)
= |V (G)| · |Tv| for all v ∈ V (G)
= |V (G)| · γ̃con(H), inequality (2).

By combining inequalities (1) and (2), we obtain the desired results. �

References
[1] Haynes, T. W., Hedetniemi, S., & Slater, P. (1998). Fundamentals of domination in graphs. CRC Press.

[2] Dayap, J. A., & Enriquez, E.L.(2017). Outer-convex Domination in Graphs. Manuscript submitted for
publication.

[3] Cockayne, E. J., & Hedetniemi, S. T. (1977). Towards a theory of domination in graphs. Networks, 7(3),
247-261.

[4] Ore, O. (1962). Theory of Graphs (Vol. 38). American Mathematical Society.

[5] Harary, F., & Nieminen, J. (1981). Convexity in graphs. Journal of Differential Geometry, 16(2), 185-190.

[6] Chartrand, G., & Zhang, P. (1999). Convex sets in graphs. In Proceedings of the Thirtieth Southeastern
International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1999).
Congr. Numer. (Vol. 136, pp. 19-32).

[7] Canoy Jr, S.R., & and Garces, I. J. L. (2002). Convex sets under some graph operations. Graphs and
Combinatorics, 18(4), 787-793.

[8] Enriquez, E. L., & Canoy Jr, S. R. (2015). Secure convex domination in a graph. International Journal of
Mathematical Analysis, 9(7), 317-325.

[9] M. Lemanska, Weakly convex and convex domination numbers. Opuscula Mathematica, 24 (2004), 181-188.

[10] Labendia, M.A., Canoy, S.R. Convex Domination in the Composition and Cartesian Product of Graphs.
Czechoslovak Mathematical Journal, 62(2012), 1003-1009.

[11] Cyman, J. (2007). The outer1-connected domination number of a graph. Australasian journal of
Combinatorics, 38, 35-46.

© JGRMA 2019, All Rights Reserved                                                                                           41

Jonecis A. Dayap et al, Journal of Global Research in Mathematical Archives, 6(3), March 2019, 34-42



[12] Enriquez, E.L., Fernandez, V., Punzalan, T., & Dayap, J.A. (2017). Perfect outer-connected domination
in the join and corona of graphs. Recoletos Multidisciplinary Research Journal, 4(2).

[13] Cyman, J. (2010). Total outer-connected domination in trees. Discussiones Mathematicae Graph Theory,
30(3), 377-383.

[14] Favaron, O., Karami, H., & Sheikholeslami, S. M. (2014). On the total outer-connected domination in
graphs. Journal of Combinatorial Optimization, 27(3), 451-461.

[15] Hinampas Jr, R. G., Lomarda-Hinampas, J., & Dahunan, A. R. (2017). 1-movable Independent Outer-
connected Domination in Graphs. Global Journal of Pure and Applied Mathematics, 13(1), 41-49.

[16] Dayap, J.A., Dionsay, J.S., & Telen, R.T. (2018). Perfect outer-convex domination in graphs. International
Journal of Latest Engineering Research and Applications, 3(7), 25-29.

[17] Chartrand, G., & Zhang, P. (2013). A first course in graph theory.Courier Corporation.

© JGRMA 2019, All Rights Reserved                                                                                           42

Jonecis A. Dayap et al, Journal of Global Research in Mathematical Archives, 6(3), March 2019, 34-42


